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Preface

This is a preliminary collection of brief notes and handouts for Math 3710. It is written to match the
6th edition of Powers textbook. This is not a replacement for your own course notes! However, if you
print this version and bring it to class, you can add class notes to it (space has been alloted for this) to
make a complete set of course notes. You can obtain this document from the website for this course in
http://faculty.weber.edu/aghoreishi/.

iii

http://faculty.weber.edu/aghoreishi/


Chapter -1

Handouts (Chapter 0 and Appendix in the Course Textbook)

The chapter zero of your textbook contains a review of ordinary differential equations and in the appendix
you find mathematical references. Read them, as needed. This chapter contains the handouts for the course
which includes textbook corrections and review of both ODE’s and a very large collection of mathematical
references.

-0.9 Handouts

1
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A Partial List of Corrections to the
Boundary Value Problems

by David L. Powers, Sixth Edition

Location Original Correction

1. Chapter 1, Misc Exer 7(f) f(x) = x f(x) = 0

2. Chapter 1, Misc Exer 8 f(x) = 0 f(x) = x

3. Sec 2.1, Exer 3 What is g · · · What is the replacement of
A∆xg · · ·

4. Sec 3.2, Exer 12 f(x) is as in Eq. (11) f(x) is as in the example in
page 221.

5. Sec 3.3, Exer 6 ... of Exercise 3 as ... ... of Exercise 5 as ....

6. Page 238, Equation (16) dxn d x

7. Sec 3.4, Exer 8
∂u2

∂x2

∂2u

∂x2

u(x, t) = f(x) u(x, 0) = f(x)

8. Sec 4.5, Exer 8(e) (... , Exercise 1) (... , Exercise 5(a))

9. Page 309, 2nd paragraph ∆x(cos(δ)− cos(γ)) σ∆x(cos(δ)− cos(γ))

10. Page 311, 3rd equation σ∆y

(
∂y

∂x
(x+ ∆x, y, t) . . . σ∆y

(
∂u

∂x
(x+ ∆x, y, t) . . .

11. Page 323, Equation (3) φ(r, π) φ(r, θ)

12. Page 381, Equation for
L(f ′′(t))

= −f(0) + · · · = −f(0)− · · · = −f ′(0) + · · · = −f ′(0)− · · ·

13. Page 457, Solution to Exer 3,
Sec 1.9

 1 for 0 < x < 1

0 for 1 < x

 1 for 0 < λ < 1

0 for 1 < λ

14. Page 466, Solution to Exer 3,
Sec 2.10

Eq. (6) Eq. (9)

15. Page 471, Solution to Exer 5,
Sec 3.3

u(0.5a, 1.2a/c) = −0.2αa u(0.5a, 1.2a/c) = αa/2

16. Page 490, Solution to Exer 1,
Chap 5, Misc Exer

µm = mπb µm = mπ/b

17. Page 491, Solution to Exer 3,
Chap 5, Misc Exer

∞∑
n=1

· · ·
∞∑
m=1

∞∑
n=1

· · ·
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Review, Identities, Formulas and Theorems

Let n, n, m, m, k, k, l, p, q and q be nonnegative integers, unless stated otherwise. Let z be a nonnegative
real number, unless stated otherwise.

Trigonometric Identities

1. sin a cos b = 1
2 [sin(a+ b) + sin(a− b)] 2. sin a sin b = 1

2 [cos(a− b)− cos(a+ b)]

3. cos a cos b = 1
2 [cos(a+ b) + cos(a− b)]

Hyperbolic Functions

4. sinhx = ex−e−x
2 5. coshx = ex+e−x

2 6. tanhx = sinhx
coshx 7. cothx = coshx

sinhx 8. sechx = 1
coshx

9. cschx = 1
sinhx

10. sinh(−x) = − sinhx 11. cosh(−x) = coshx 12. cosh2 x− sinh2 x = 1 13. 1− tanh2 x = sech2x

14. sinh(x± y) = sinhx cosh y ± coshx sinh y 15. cosh(x± y) = coshx cosh y ± sinhx sinh y

16. d
dx(sinhx) = coshx 17. d

dx(coshx) = sinhx 18. d
dx(tanhx) = sech2x 19. d

dx(cothx) = −csch2x

20. d
dx(sechx) = −sechx tanhx 21. d

dx(cschx) = −cschx cothx

Integrals

22.

ˆ
x sin ax dx = 1

a2
sin ax− x

a cos ax+ C 23.

ˆ
x cos ax dx = 1

a2
cos ax+ x

a sin ax+ C

24.

ˆ
x2 sin ax dx = 2

a3
cos ax+ 2

a2
x sin ax− 1

ax
2 cos ax+ C

25.

ˆ
x2 cos ax dx = − 2

a3
sin ax+ 2

a2
x cos ax+ 1

ax
2 sin ax+ C

26.

ˆ
eax sin bx dx =

eax

a2 + b2
(a sin bx− b cos bx) +C 27.

ˆ
eax cos bx dx =

eax

a2 + b2
(a cos bx+ b sin bx) +C

Definite Integrals

28.

ˆ a

0
sin nπx

a sin mπx
a dx =

{
a
2 , if n = m 6= 0
0, otherwise

29.

ˆ a

0
cos nπxa cos mπxa dx =


a, if n = m = 0
a
2 , if n = m 6= 0
0, otherwise

30. For positive integers n and m,

ˆ a

0
cos (2n−1)πx

2a cos (2m−1)πx
2a dx =

{
a
2 , if n = m
0, otherwise

31. For positive integers n and m,

ˆ a

0
sin (2n−1)πx

2a sin (2m−1)πx
2a dx =

{
a
2 , if n = m
0, otherwise

32.

ˆ a

−a
sin nπx

a sin mπx
a dx =

{
a, if n = m 6= 0
0, otherwise

33.

ˆ a

−a
cos nπxa cos mπxa dx =


2a, if n = m = 0
a, if n = m 6= 0
0, otherwise

34.

ˆ a

−a
sin nπx

a cos mπxa dx = 0

35. For 0 < α1 < α2 < · · · zeros of Jz(x) and z ≥ 0,

ˆ a

0
Jz(

αmr
a )Jz(

αmr
a ) r dr =

{
a2

2 J
2
z+1(αm), if m = m

0, otherwise
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36. For 0 < β1 < β2 < · · · zeros of J ′0(x),

ˆ a

0
J0(βmra ) r dr = 0 and

ˆ a

0
J0(βmra )J0(βmra ) r dr =

{
a2

2 J
2
0 (βm), if m = m

0, otherwise

37. For 0 < β1 < β2 < · · · zeros of J ′z(x) and z > 0,ˆ a

0
Jz(

βmr
a )Jz(

βmr
a ) r dr =

{
a2

2 [J2
z (βm)− Jz−1(βm)Jz+1(βm)], if m = m

0, otherwise

38*.

ˆ π

0
Pmn (cosφ)Pmn (cosφ) sinφdφ =

{
2

2n+1
(n+m)!
(n−m)! , if n = n ≥ m

0, otherwise

39*.

ˆ 1

−1
Pmn (s)Pmn (s) ds =

{
2

2n+1
(n+m)!
(n−m)! , if n = n ≥ m

0, otherwise

* For m = 0, Pmk (s) = Pk(s) and (n+m)!
(n−m)! = 1.

Definite Double Integrals

40.

ˆ a

0

ˆ b

0
sin nπx

a sin mπy
b sin pπx

a sin qπy
b dy dx =

{
ab
4 , if n = p 6= 0 and m = q 6= 0

0, otherwise

41.

ˆ a

0

ˆ b

0
sin nπx

a cos mπyb sin pπx
a cos qπyb dy dx =


ab
2 , if n = p 6= 0 and m = q = 0
ab
4 , if n = p 6= 0 and m = q 6= 0

0, otherwise

42.

ˆ a

0

ˆ b

0
cos nπxa cos mπyb cos pπxa cos qπyb dy dx =



ab, if n = m = p = q = 0
ab
2 , if n = p 6= 0 and m = q = 0
ab
2 , if n = p = 0 and m = q 6= 0
ab
4 , if n = p 6= 0 and m = q 6= 0

0, otherwise

Suppose 0 < α1 < α2 < · · · are zeros of Jz(x).

43.

ˆ a

0

ˆ b

0
Jz(

αmr
a )Jz(

αmr
a ) r cos kπθb cos kπθb dθ dr =


a2b
2 J

2
z+1(αm), if m = m and k = k = 0

a2b
4 J

2
z+1(αm), if m = m and k = k 6= 0

0, otherwise

44.

ˆ a

0

ˆ b

0
Jz(

αmr
a )Jz(

αmr
a ) r sin kπθ

b sin kπθ
b dθ dr =

{
a2b
4 J

2
z+1(αm), if m = m and k = k 6= 0

0, otherwise

45.

ˆ a

0

ˆ b

−b
Jz(

αmr
a )Jz(

αmr
a ) r cos kπθb cos kπθb dθ dr =


a2bJ2

z+1(αm), if m = m and k = k = 0
a2b
2 J

2
z+1(αm), if m = m and k = k 6= 0

0, otherwise

46.

ˆ a

0

ˆ b

−b
Jz(

αmr
a )Jz(

αmr
L ) r sin kπθ

b sin kπθ
b dθ dr =

{
a2b
2 J

2
z+1(αm), if m = m and k = k 6= 0

0, otherwise
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47*.

ˆ π

0

ˆ b

0
Pmn (cosφ)Pmn (cosφ) sinφ cos kπθb cos kπθb dθ dφ =


2b

2n+1
(n+m)!
(n−m)! , if n = n ≥ m and k = k = 0

b
2n+1

(n+m)!
(n−m)! , if n = n ≥ m and k = k 6= 0

0, otherwise

48*.

ˆ π

0

ˆ b

0
Pmn (cosφ)Pmn (cosφ) sinφ sin kπθ

b sin kπθ
b dθ dφ =

{
b

2n+1
(n+m)!
(n−m)! , if n = n ≥ m and k = k 6= 0

0, otherwise

49*.

ˆ π

0

ˆ b

−b
Pmn (cosφ)Pmn (cosφ) sinφ cos kπθb cos kπθb dθ dφ =


4b

2n+1
(n+m)!
(n−m)! , if n = n ≥ m and k = k = 0

2b
2n+1

(n+m)!
(n−m)! , if n = n ≥ m and k = k 6= 0

0, otherwise

50*.

ˆ π

0

ˆ b

−b
Pmn (cosφ)Pmn (cosφ) sinφ sin kπθ

b sin kπθ
b dθ dφ =

{
2b

2n+1
(n+m)!
(n−m)! , if n = n ≥ m and k = k 6= 0

0, otherwise

* It also holds if k = m. For m = 0, Pmk (s) = Pk(s) and (n+m)!
(n−m)! = 1.

Definite Triple Integrals

Suppose 0 < α1 < α2 < · · · are zeros of Jz(x).

51**.

ˆ a

0

ˆ π

0

ˆ b

0
Jz(

αmρ
a )Jz(

αmρ
a ) ρP lk(cosφ)P l

k
(cosφ) sinφ cos qπθb cos qπθb dθ dφ dρ =

a2b
2k+1

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q = 0

a2b
2(2k+1)

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q 6= 0

0, otherwise

52**.

ˆ a

0

ˆ π

0

ˆ b

0
Jz(

αmρ
a )Jz(

αmρ
a ) ρP lk(cosφ)P l

k
(cosφ) sinφ sin qπθ

b sin qπθ
b dθ dφ dρ ={

a2b
2(2k+1)

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q 6= 0

0, otherwise

53**.

ˆ a

0

ˆ π

0

ˆ b

−b
Jz(

αmρ
a )Jz(

αmρ
a ) ρP lk(cosφ)P l

k
(cosφ) sinφ cos qπθb cos qπθb dθ dφ dρ =

2a2b
2k+1

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q = 0

a2b
2k+1

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q 6= 0

0, otherwise

54**.

ˆ a

0

ˆ π

0

ˆ b

−b
Jz(

αmρ
a )Jz(

αmρ
a ) ρP lk(cosφ)P l

k
(cosφ) sinφ sin qπθ

b sin qπθ
b dθ dφ dρ ={

a2b
2k+1

(k+l)!
(k−l)!J

2
z+1(αm), if m = m, k = k ≥ l and q = q 6= 0

0, otherwise

** For l = 0, P ln(s) = Pn(s) and (k+l)!
(k−1)! = 1.

Ordinary Differential Equations

55. First Order Linear ODE: y′ + f(x)y = g(x)

Integrating Factor: µ(x) = e
´
f(x)dx

with C = 0 , µ(x)y′(x) + µ(x)f(x)y(x) = µ(x)g(x) =⇒
d
dx [µ(x)y(x)] = µ(x)g(x) =⇒ µ(x)y(x) =

ˆ
µ(x)g(x) dx+ C =⇒ y(x) = 1

µ(x)

ˆ
µ(x)g(x) dx+ C

µ(x)

Or, integrating factor: µ(x) = e

´x
x0

f(t)dt

and y(x) = 1
µ(x)

ˆ x

x0

µ(t)g(t) dt+ y(x0)
µ(x)



CHAPTER -1. HANDOUTS 6

56. First Order Separable ODE:
dy

dx
=
g(x)

h(y)

Implicit Solution:

ˆ
h(y) dy =

ˆ
g(x) dx =⇒ H(y) = G(x) + C with H ′ = h and G′ = g

Or,

ˆ y

y(x0)
h(t) dt =

ˆ x

x0

g(t) dt

57. Exact ODE: M(x, y) +N(x, y)
dy

dx
= 0 is called exact if

∂M

∂y
=
∂N

∂x

Implicit Solution: F (x, y) = C where
∂F

∂x
= M and

∂F

∂y
= N

Start with ∂F
∂x = M or ∂F

∂y = N integrate with respect to x or y, respectively, then differentiate
with respect to the other variable, and use the other equation to find the remaining function
of y or x.

58. Second Order Linear ODE with Constant Coefficients: ay′′ + by′ + cy = 0

Characteristic Equation: ar2 + br + c = 0 with solutions r1 and r2

y(x) =


c1e

r1x + c2e
r2x, if r1 and r2 are real-valued and unequal

c1e
r1x + c2 x e

r1x, if r1 = r2

c1e
λx cosµx+ c2e

λx sinµx, if r1, r2 = λ± µi

If r1, r2 = ±r, then y(x) = c1e
−rx + c2e

rx or y(x) = c1 cosh rx+ c2 sinh rx or

y(x) = c1 cosh r(x− x0) + c2 sinh r(x− x0) or

y(x) = c1 sinh r(x− x0) + c2 sinh rx or y(x) = c1 cosh r(x− x0) + c2 cosh rx

59. Second Order Linear Nonhomogeneous ODE: y′′ + p(x)y′ + q(x)y = g(x)

General Solution: y(x) = yh(x) + yp(x) where the homogeneous solution yh(x) = c1y1(x) + c2y2(x)

is the general solution to the homogeneous equation y′′ + p(x)y′ + q(x)y = 0, while y1 and y2 are

two linearly independent solutions of the same homogeneous equation, and the particular solution

yp(x) is a solution to the nonhomogeneous equation y′′ + p(x)y′ + q(x)y = g(x).

Method of Variation of Parameters: yp(x) = u1(x)y1(x) + u2(x)y2(x) where u′1(x) = −y2(x)g(x)
W (x) ,

u′2(x) = y1(x)g(x)
W (x) and the Wronskian W (x) = y1(x)y′2(x)− y2(x)y′1(x).

yp(x) = y1(x)

ˆ
−y2(x)g(x)
W (x) dx+ y2(x)

ˆ
y1(x)g(x)
W (x) dx or

yp(x) = y1(x)

ˆ x

x0

−y2(t)g(t)
W (t) dt+ y2(x)

ˆ x

x0

y1(t)g(t)
W (t) dt

60. Cauchy-Euler Equation: x2y′′ + αxy′ + βy = 0

Indicial Equation: p(p− 1) + αp+ β = 0 with solutions p1 and p2

y(x) =


c1|x|p1 + c2|x|p2 , if p1 and p2 are real-valued and unequal

(c1 + c2 ln |x|)|x|p1 , if p1 = p2

|x|λ[c1 cos(µ ln |x|) + c2 sin(µ ln |x|)], if p1, p2 = λ± µi

61. x2d
2φ

dx2
+ x

dφ

dx
− n2φ = 0 and φ(0) bounded =⇒ φ(x) = xn for n = 0 , 1 , · · ·
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Rayleigh Quotients

62.
d

dx

[
s(x) dφdx

]
− q(x)φ+ λp(x)φ = 0 =⇒ λ =

−s(x)φ(x) dφ
dx

∣∣∣r
l

+

ˆ r

l

[
s(x)(dφdx )2 + q(x)φ2(x)

]
dx

ˆ r

l
φ2(x)p(x) dx

63. ∇2φ+ λφ = 0 =⇒ λ =

−
‰

C

φ∇φ · n̂ ds+

¨

R

|∇φ|2 dA

¨

R

φ2 dA

Lagrange’s Identity and Green’s Formula

For L(φ) =
d

dx

[
s(x)

dφ

dx

]
− q(x)φ,

64. uL(v)− vL(u) =
d

dx

[
s(x)

(
u(x)

dv

dx
− v(x)

du

dx

)]
65.

ˆ r

l
[uL(v)− vL(u)] dx = s(x)

[
u(x)

dv

dx
− v(x)

du

dx

]∣∣∣∣r
l

Green’s Identities

66.

¨

R

u∇2v dA =

‰

C

u∇v · n̂ ds−
¨

R

∇u · ∇v dA

67.

¨

R

(u∇2v − v∇2u) dA =

‰

C

(u∇v − v∇u) · n̂ ds

68.

˚

Ω

(u∇2v − v∇2u) dV =

‹

∂Ω

(u∇v − v∇u) · n̂ dS

Eigenvalue Problems

69.
d2φ

dx2
= −λφ , φ(0) = 0 and φ(a) = 0 =⇒ λ = (nπa )2 , φ(x) = sin nπx

a for n = 1 , 2 , · · ·

70.
d2φ

dx2
= −λφ , dφ

dx
(0) = 0 and

dφ

dx
(a) = 0 =⇒ λ = (nπa )2 , φ(x) = cos nπxa for n = 0 , 1 , · · ·

71.


d2φ

dx2
= −λφ

φ(−a) = φ(a)
dφ

dx
(−a) =

dφ

dx
(a)

=⇒
λ = (nπa )2

φ(x) = cos nπxa and sin nπx
a

for n = 0 , 1 , · · ·

72.


d2φ

dx2
= −λφ

φ(0) = 0
dφ

dx
(a) = 0

=⇒
λ = [ (2n−1)π

2a ]2

φ(x) = sin (2n−1)πx
2a

for n = 1 , 2 , · · ·

73.



d2φ

dx2
= −λφ

dφ

dx
(0) = 0

φ(a) = 0

=⇒
λ = [ (2n−1)π

2a ]2

φ(x) = cos (2n−1)πx
2a

for n = 1 , 2 , · · ·
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74.


x2d

2φ

dx2
+ x

dφ

dx
+ (λx2 − n2)φ = 0

φ(0) bounded

φ(a) = 0

=⇒
λ = (αma )2

φ(x) = Jn(αmxa )
for 0 < α1 < α2 < · · · zeros of Jn(x)

75.


d

dρ

[
ρ2 df

dρ

]
+ [λρ2 − n(n+ 1)]f(ρ) = 0

f(0) bounded

f(a) = 0

=⇒
λ = (αka )2

f(ρ) = ρ−
1
2Jn+ 1

2
(αkρa )

for 0 < α1 < α2 < · · · zeros of Jn+ 1
2
(ρ)

76.


x2d

2φ

dx2
+ x

dφ

dx
+ (λx2 − n2)φ = 0

φ(0) bounded
dφ

dx
(a) = 0

=⇒
n = 0 , λ = 0 , φ(x) = 1

n > 0 , λ = (βma )2 , φ(x) = Jn(βmxa )

for 0 < β1 < β2 < · · · zeros of J ′n(x)

77*.


d

dφ

[
sinφ

dg

dφ

]
+

(
−µ sinφ− m2

sinφ

)
g(φ) = 0

g(0) and g(π) bounded

=⇒
µ = −n(n+ 1)

g(φ) = Pmn (cosφ)
for n = m, m+ 1 , · · ·

78*.

 (1− s2)
d2φ

ds2
− 2s

dφ

ds
+
(
−µ− m2

1−s2

)
φ = 0

φ(−1) and φ(1) bounded
=⇒

µ = −n(n+ 1)

φ(s) = Pmn (s)
for n = m, m+ 1 , · · ·

* For m = 0, Pmn (s) = Pn(s).

Two-Dimensional Eigenvalue Problems

79.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) = φ(a, y) = 0

φ(x, 0) = φ(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = sin nπx
a sin mπy

b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·

80.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) =

∂φ

∂x
(a, y) = 0

∂φ

∂y
(x, 0) =

∂φ

∂y
(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = cos nπxa cos mπyb

for n = 0 , 1 , · · · and m = 0 , 1 , · · ·

81.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) = φ(a, y) = 0
∂φ

∂y
(x, 0) =

∂φ

∂y
(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = sin nπx
a cos mπyb

for n = 1 , 2 , · · · and m = 0 , 1 , · · ·

82.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) =

∂φ

∂x
(a, 0) = 0

φ(x, 0) = φ(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = cos nπxa sin mπy
b

for n = 0 , 1 , · · · and m = 1 , 2 , · · ·

83.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) = φ(a, y) = 0
∂φ

∂y
(x, 0) = φ(x, b) = 0

=⇒
λ = (nπa )2 + [ (2m−1)π

2b ]2

φ(x) = sin nπx
a cos (2m−1)πy

2b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·
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84.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) = φ(a, y) = 0

φ(x, 0) = ∂φ
∂y (x, b) = 0

=⇒
λ = (nπa )2 + [ (2m−1)π

2b ]2

φ(x) = sin nπx
a sin (2m−1)πy

2b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·

85.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) =

∂φ

∂x
(a, y) = 0

∂φ

∂y
(x, 0) = φ(x, b) = 0

=⇒
λ = (nπa )2 + [ (2m−1)π

2b ]2

φ(x) = cos nπxa cos (2m−1)πy
2b

for n = 0 , 1 , · · · and m = 1 , 2 , · · ·

86.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) =

∂φ

∂x
(a, y) = 0

φ(x, 0) =
∂φ

∂y
(x, b) = 0

=⇒
λ = (nπa )2 + [ (2m−1)π

2b ]2

φ(x) = cos nπxa sin (2m−1)πy
2b

for n = 0 , 1 , · · · and m = 1 , 2 , · · ·

87.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) = φ(a, y) = 0

φ(x, 0) =
∂φ

∂y
(x, b) = 0

=⇒
λ = [ (2n−1)π

2a ]2 + [ (2m−1)π
2b ]2

φ(x) = cos (2n−1)πx
2a sin (2m−1)πy

2b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·

88.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) = φ(a, y) = 0

∂φ

∂y
(x, 0) = φ(x, b) = 0

=⇒
λ = [ (2n−1)π

2a ]2 + [ (2m−1)π
2b ]2

φ(x) = cos (2n−1)πx
2a cos (2m−1)πy

2b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·

89.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) =
∂φ

∂x
(a, y) = 0

φ(x, 0) =
∂φ

∂y
(x, b) = 0

=⇒
λ = [ (2n−1)π

2a ]2 + [ (2m−1)π
2b ]2

φ(x) = sin (2n−1)πx
2a sin (2m−1)πy

2b

for n = 1 , 2 , · · · and m = 1 , 2 , · · ·

Supporting Theorems

90. Green’s Theorem (vector version)

Let R be a region in <2 bounded by a piecewise-smooth, simple closed curve C with

counterclockwise orientation. Let ~F be a vector field whose components have continuous

partial derivatives on an open region containing R, then

¨

R

∇ · ~F dA =

‰

C

~F · n̂ ds .

91. Divergence Theorem

Let Ω be a simple solid region in <3 and let ∂Ω be its boundary with the outward orientation. Let

~F be a vector field whose components have continuous partial derivatives on an open region

containing Ω, then

˚

Ω

∇ · ~F dV =

‹

∂Ω

~F · n̂ dS .

92. If function f is continuous, f(x) 6≡ 0 and f(x) ≥ 0 for a ≤ x ≤ b, then

ˆ b

a
f(x) dx > 0 .
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93. For a continuous nonnegative function f if

ˆ b

a
f(x) dx = 0, then f(x) = 0 for a ≤ x ≤ b .

94. Uniform Convergence Definition

The sequence of functions fn : D −→ < , n = 1 , 2 , · · · , is said to converge uniformly to the

function f : D −→ < if for every ε > 0, there is a natural number N such that for all x ∈ D we

have |fn(x)− f(x)| < ε for all n ≥ N .

95. Weierstrass M Test (A test for uniform convergence.)

Suppose for each function fn : D −→ < , n = 1 , 2 , · · · , there exists a constant Mn with

|fn(x)| ≤Mn for all x ∈ D , and
∞∑
n=1

Mn converges. Then
∞∑
n=1

fn converges uniformly.

96. Interchanging Limit and Integral

Suppose functions fn : [a, b] −→ < , n = 1 , 2 , · · · , are continuous and converge uniformly to a

function f : [a, b] −→ < . Then lim
n→∞

[ˆ b

a
fn(x) dx

]
=

ˆ b

a

[
lim
n→∞

fn(x)
]
dx =

ˆ b

a
f(x) dx .

97. Interchanging Integral and Summation

Suppose functions fn : [a, b] −→ < , n = 1 , 2 , · · · , are continuous, and
∞∑
n=1

fn converges uniformly.

Then

ˆ b

a

[ ∞∑
n=1

fn(x)

]
dx =

∞∑
n=1

[ˆ b

a
f(x) dx

]
.

98. Interchanging Differentiation and Summation

Suppose functions fn , n = 1 , 2 , · · · , are continuously differentiable,

∞∑
n=1

fn converges pointwise,

and

∞∑
n=1

f ′n converges uniformly. Then
d

dx

[ ∞∑
n=1

fn(x)

]
=
∞∑
n=1

[
d

dx
fn(x)

]
.

99. Leibniz Integral Rule (Interchanging differentiation and integration with respect to different variables.)

Suppose functions f(x, y) and
∂f

∂y
(x, y) are continuous on [a, b]× [c, d]. Then

d

dy

[ˆ b

a
f(x, y) dx

]
=

ˆ b

a

[
∂

∂y
f(x, y)

]
dx.

Fourier Series

100. If f(x) = A0 +

∞∑
n=1

An cos
nπx

a
for 0 < x < a, then A0 = 1

a

ˆ a

0
f(x) dx and An = 2

a

ˆ a

0
f(x) cos nπxa dx

101. If f(x) =

∞∑
n=1

Bn sin
nπx

a
for 0 < x < a, then Bn = 2

a

ˆ a

0
f(x) sin nπx

a dx

102. If f(x) = a0 +
∞∑
n=1

an cos
nπx

a
+
∞∑
n=1

bn sin
nπx

a
for −a < x < a, then a0 = 1

2a

ˆ a

−a
f(x) dx,

an = 1
a

ˆ a

−a
f(x) cos nπxa dx and bn = 1

a

ˆ a

−a
f(x) sin nπx

a dx

103. If f(x) =

∞∑
n=1

An cos
(2n− 1)πx

2a
for 0 < x < a, then An = 2

a

ˆ a

0
f(x) cos (2n−1)πx

2a dx
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104. If f(x) =

∞∑
n=1

Bn sin
(2n− 1)πx

2a
for 0 < x < a, then Bn = 2

a

ˆ a

0
f(x) sin (2n−1)πx

2a dx

Generalized Fourier Series

105. Suppose 0 < β1 < β2 < · · · are zeros of J ′0(x).

If f(r) = a0 +
∞∑
m=1

amJ0(
βmr

a
) for 0 < r < a, then a0 = 2

a2

ˆ a

0
f(r) r dr and

am =

ˆ a

0
f(r)J0(βmra )r dr
ˆ a

0
J2

0 (βmra )r dr

=

2

ˆ a

0
f(r)J0(βmra )r dr

a2J2
0 (βm)

106. Suppose 0 < β1 < β2 < · · · are zeros of J ′z(x) and z > 0.

If f(r) =

∞∑
m=1

amJz(
βmr

a
) for 0 < r < a, then

am =

ˆ a

0
f(r)Jz(

βmr
a )r dr

ˆ a

0
J2
z (βmra )r dr

=

2

ˆ a

0
f(r)Jz(

βmr
a )r dr

a2[J2
z (βm)− Jz−1(βm)Jz+1(βm)]

107. If f(φ) =
∞∑
n=m

anP
m
n (cosφ) for 0 < φ < π and m > 0 , then

an =

ˆ π

0
f(φ)Pmn (cosφ) sinφdφ

ˆ π

0
[Pmn (cosφ)]2 sinφdφ

= 2n+1
2

(n−m)!
(n+m)!

ˆ π

0
f(φ)Pmn (cosφ) sinφdφ

108. If f(φ) =
∞∑
n=0

anPn(cosφ) for 0 < φ < π , then

an =

ˆ π

0
f(φ)Pn(cosφ) sinφdφ

ˆ π

0
[Pn(cosφ)]2 sinφdφ

= 2n+1
2

ˆ π

0
f(φ)Pn(cosφ) sinφdφ

109. If f(φ) =

∞∑
k=0

akP2k(cosφ) for 0 < φ < π
2 , then

ak =

ˆ π
2

0
f(φ)P2k(cosφ) sinφdφ

ˆ π
2

0
[P2k(cosφ)]2 sinφdφ

= (4k + 1)

ˆ π
2

0
f(φ)P2k(cosφ) sinφdφ
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110. If f(φ) =

∞∑
k=1

akP2k−1(cosφ) for 0 < φ < π
2 , then

ak =

ˆ π
2

0
f(φ)P2k−1(cosφ) sinφdφ

ˆ π
2

0
[P2k−1(cosφ)]2 sinφdφ

= (4k − 1)

ˆ π
2

0
f(φ)P2k−1(cosφ) sinφdφ

Double Fourier Series

111. If f(x, y) =

∞∑
n=1

∞∑
m=1

Bnm sin
nπx

a
sin

mπy

b
for (x, y) ∈ (0, a)× (0, b), then

Bnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a sin mπy
b dy dx

112. If f(x, y) =

∞∑
n=0

∞∑
m=0

Anm cos
nπx

a
cos

mπy

b
for (x, y) ∈ (0, a)× (0, b), then

A00 = 1
ab

ˆ a

0

ˆ b

0
f(x, y) dy dx , An0 = 2

ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa dy dx ,

A0m = 2
ab

ˆ a

0

ˆ b

0
f(x, y) cos mπyb dy dx and Anm = 4

ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa cos mπyb dy dx

113. If f(x, y) =
∞∑
n=1

∞∑
m=0

Cnm sin
nπx

a
cos

mπy

b
for (x, y) ∈ (0, a)× (0, b), then

Cn0 = 2
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a dy dx and Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a cos mπyb dy dx

114. If f(x, y) =
∞∑
n=0

∞∑
m=1

Cnm sin
mπx

a
cos

nπy

b
+
∞∑
n=1

∞∑
m=1

Dnm sin
mπx

a
cos

nπy

b
for

(x, y) ∈ (0, a)× (−b, b), then C0m = 1
ab

ˆ a

0

ˆ b

−b
f(x, y) sin mπx

a dy dx ,

Cnm = 2
ab

ˆ a

0

ˆ b

−b
f(x, y) sin mπx

a cos nπyb dy dx and Dnm = 2
ab

ˆ a

0

ˆ b

−b
f(x, y) sin mπx

a sin nπy
b dy dx

115. If f(x, y) =

∞∑
n=1

∞∑
m=1

Cnm cos
(2n− 1)πx

2a
cos

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) cos (2n−1)πx

2a cos (2m−1)πy
2b dy dx

116. If f(x, y) =

∞∑
n=1

∞∑
m=1

Cnm sin
nπx

a
cos

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a cos (2m−1)πy
2b dy dx

117. If f(x, y) =

∞∑
n=0

∞∑
m=1

Cnm cos
nπx

a
cos

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

C0m = 2
ab

ˆ a

0

ˆ b

0
f(x, y) cos (2m−1)πy

2b dy dx and Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa cos (2m−1)πy

2b dy dx
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118. If f(x, y) =

∞∑
n=1

∞∑
m=1

Cnm sin
nπx

a
sin

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a sin (2m−1)πy
2b dy dx

119. If f(x, y) =

∞∑
n=0

∞∑
m=1

Cnm cos
nπx

a
sin

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

C0m = 2
ab

ˆ a

0

ˆ b

0
f(x, y) sin (2m−1)πy

2b dy dx and Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa sin (2m−1)πy

2b dy dx

120. If f(x, y) =

∞∑
n=1

∞∑
m=1

Cnm sin
(2n− 1)πx

a
sin

(2m− 1)πy

2b
for (x, y) ∈ (0, a)× (0, b), then

Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin (2n−1)πx

a sin (2m−1)πy
2b dy dx

Generalized Double Fourier Series

Suppose 0 < α1 < α2 < · · · are zeros of Jz(x).

121. If f(r, θ) =

∞∑
k=0

∞∑
m=1

AmkJz(
αmr

a
) cos

kπθ

b
for (r, θ) ∈ (0, a)× (0, b), then

Am0 = 2
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

0
f(r, θ)Jz(

αmr
a )r dθ dr and

Amk = 4
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

0
f(r, θ) cos kπθb Jz(

αmr
L )r dθ dr

122. If f(r, θ) =

∞∑
k=1

∞∑
m=1

BmkJz(
αmr

a
) sin

kπθ

b
for (r, θ) ∈ (0, a)× (0, b), then

Bmk = 4
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

0
f(r, θ) sin kπθ

b Jz(
αmr
b )r dθ dr

123. If f(r, θ) =
∞∑
k=0

∞∑
m=1

AmkJz(
αmr

a
) cos

kπθ

b
+
∞∑
k=1

∞∑
m=1

BmkJz(
αmr

a
) sin

kπθ

b
for

(r, θ) ∈ (0, a)× (−b, b), then Am0 = 1
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

−b
f(r, θ)Jz(

αmr
a )r dθ dr ,

Amk = 2
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

−b
f(r, θ) cos kπθb Jz(

αmr
a )r dθ dr and

Bmk = 2
a2bJ2

z+1(αm)

ˆ a

0

ˆ b

−b
f(r, θ) sin kπθ

b Jz(
αmr
a )r dθ dr

124*. If f(θ, φ) =

∞∑
k=0

∞∑
n=m

AnkP
m
n (cosφ) cos

kπθ

b
for (θ, φ) ∈ (0, b)× (0, π), then

An0 = 2n+1
2b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

0
f(θ, φ)Pmn (cosφ) sinφdθ dφ and

Ank = 2n+1
b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

0
f(θ, φ) cos kπθb P

m
n (cosφ) sinφdθ dφ

* It also holds if k = m. For m = 0, Pmn (s) = Pn(s) and (n−m)!
(n+m)! = 1.
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125*. If f(θ, φ) =

∞∑
k=0

∞∑
n=m

AnkP
m
n (cosφ) sin

kπθ

b
for (θ, φ) ∈ (0, b)× (0, π), then

Bnk = 2n+1
b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

0
f(θ, φ) sin kπθ

b P
m
n (cosφ) sinφdθ dφ

126*. If f(θ, φ) =
∞∑
k=0

∞∑
n=m

AnkP
m
n (cosφ) cos

kπθ

b
+
∞∑
k=1

∞∑
n=m

BnkP
m
n (cosφ) sin

kπθ

b
for

(θ, φ) ∈ (−b, b)× (0, π) , then An0 = 2n+1
4b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

−b
f(θ, φ)Pmn (cosφ) sinφdθ dφ ,

Ank = 2n+1
2b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

−b
f(θ, φ) cos kπθb P

m
n (cosφ) sinφdθ dφ and

Bnk = 2n+1
2b

(n−m)!
(n+m)!

ˆ π

0

ˆ b

−b
f(θ, φ) sin kπθ

b P
m
n (cosφ) sinφdθ dφ

* It also holds if k = m. For m = 0, Pmn (s) = Pn(s) and (n−m)!
(n+m)! = 1.

Generalized Triple Fourier Series

Suppose 0 < α1 < α2 < · · · are zeros of Jz(x).

127**. If f(ρ, θ, φ) =
∞∑
q=0

∞∑
k=l

∞∑
m=1

AmkqJz(
αmρ

a
)P lk(cosφ) cos

qπθ

b
for (ρ, θ, φ) ∈ (0, a)× (0, b)× (0, π),

then Amk0 = 2k+1
a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

0
f(ρ, θ, φ)Jz(

αmρ
a )ρP lk(cosφ) sinφdθ dφ dρ and

Amkq = 2(2k+1)
a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

0
f(ρ, θ, φ)Jz(

αmρ
a )ρP lk(cosφ) sinφ cos qπθb dθ dφ dρ

128**. If f(ρ, θ, φ) =
∞∑
q=1

∞∑
k=l

∞∑
m=1

BmkqJz(
αmρ

a
)P lk(cosφ) sin

qπθ

b
for (ρ, θ, φ) ∈ (0, a)×(0, b)×(0, π),

then Bmkq = 2(2k+1)
a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

0
f(ρ, θ, φ)Jz(

αmρ
a )ρP lk(cosφ) sinφ sin qπθ

b dθ dφ dρ

129**. If f(ρ, θ, φ) =
∞∑
q=0

∞∑
k=l

∞∑
m=1

AmkqJz(
αmρ

a
)P lk(cosφ) cos

qπθ

b
+

∞∑
q=1

∞∑
k=l

∞∑
m=1

BmkqJz(
αmρ

a
)P lk(cosφ) sin

qπθ

b

for (ρ, θ, φ) ∈ (0, a)× (−b, b)× (0, π), then

Amk0 = 2k+1
2a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz(

αmρ
b )ρP lk(cosφ) sinφdθ dφ dρ ,

Amkq = 2k+1
a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz(

αmρ
a )ρP lk(cosφ) sinφ cos qπθb dθ dφ dρ and

Bmkq = 2k+1
a2bJ2

z+1(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz(

αmρ
a )ρP lk(cosφ) sinφ sin qπθ

b dθ dφ dρ

** For l = 0, P lk(s) = Pk(s) and (k−l)!
(k+l)! = 1
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Suppose 0 < α1 < α2 < · · · are zeros of Jz(x).

130*. If f(ρ, θ, φ) =
∞∑
q=0

∞∑
k=l

∞∑
m=1

Amkq ρ
− 1

2Jz+ 1
2
(
αmρ

a
)P lk(cosφ) cos

qπθ

a
+

∞∑
q=1

∞∑
k=l

∞∑
m=1

Bmkq ρ
− 1

2Jz+ 1
2
(
αmρ

a
)P lk(cosφ) sin

qπθ

b

for (ρ, θ, φ) ∈ (0, a)× (−b, b)× (0, π), then

Amk0 = 2k+1
2a2bJ2

z+3
2

(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz+ 1

2
(αmρa )ρ

3
2P lk(cosφ) sinφdθ dφ dρ ,

Amkq = 2k+1
a2bJ2

z+3
2

(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz+ 1

2
(αmρa )ρ

3
2P lk(cosφ) sinφ cos qπθb dθ dφ dρ and

Bmkq = 2k+1
a2bJ2

z+3
2

(αm)
(k−l)!
(k+l)!

ˆ a

0

ˆ π

0

ˆ b

−b
f(ρ, θ, φ)Jz+ 1

2
(αmρa )ρ

3
2P lk(cosφ) sinφ sin qπθ

b dθ dφ dρ

* For l = 0, P lk(s) = Pk(s) and (k−l)!
(k+l)! = 1



Chapter 0

Introduction (Not corresponding to the course textbook)

Definitions: 1. A partial differential equation (PDE) is an equation

F (u, ux, uy, · · · , uxx, uxy, · · · ) = G(x, y, · · · )

involving independent variables x, y, · · · , a function u of these variables and the partial derivatives
ux, uy, · · · , uxx, uxy, · · · , of the function. Also, functions of independent variables may be used as co-
efficients for function u and its partial derivatives.

2. The order of a PDE is the order of the partial derivative of highest order appearing in the equation.

3. A function u(x, y, · · · ) is called a solution of the PDE if the PDE becomes an identity in the indepen-
dent variables when u and its partial derivatives are substituted in the PDE.

4. A PDE is called homogeneous if G ≡ 0, (no independent variable appears by itself).

5. A PDE is called linear if for all constants α and β and functions u and v we have

F (w, wx, wy, · · · , wxx, wxy, · · · ) = αF (u, ux, uy, · · · , uxx, uxy, · · · ) + βF (v, vx, vy, · · · , vxx, vxy, · · · )

where w = αu+ βv.

Examples: 1. ∂u
∂t − u

∂u
∂x = 0 is a nonlinear homogeneous first-order PDE.

For nonlinearity, show F (αu+ αv) 6= αF (u) + βF (v) for particular values of α, β and functions u and v,
where F (u) = ∂u

∂t − u
∂u
∂x . Classroom discussion!

2. uxx + uyy = 6x is a linear nonhomogeneous second-order PDE and u(x, y) = x3 + x2 − y2 and
u(x, y) = x3 + ex cos y are two solutions of it.

16
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Classroom discussion!

3. uxx = 1
kut is a homogeneous linear PDE of order 2.

Here F (u) = uxx − 1
kut. Classroom discussion!

Examples: 1. Find the solution u(x, y) of ∂u
∂x − y sinx = 0.

For how to solve a separable ODE see the Review, Identities, Formulas and TheoremsHandout. Classroom
discussion!

2. Find the solution u(x, y) of uxx − u = 0 which satisfies the auxiliary conditions; u(0, y) = y + 6 and
ux(0, y) = y.

For how to solve a 2nd order linear ODE with constant coefficients see the Review, Identities, Formulas
and TheoremsHandout. Classroom discussion!
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Exercises: 1. In example (1) above, have we found all of the solutions?
2. Find the solution u(x, y, z) of ux − y sinx = 0.
3. Find the solution u(x, y) of uuxy + ux uy = 0. Hint: Notice that it is an exact ODE with respect to y
derivative whose solution leads to a separable equation. For how to solve an exact ODE see the Review,
Identities, Formulas and TheoremsHandout.

Sometimes we can find infinitely many solutions. For example consider ux + uy = 0. Functions un(x, y) =
(x−y)n, n = 0, 1, · · · , satisfy the PDE, so perhaps their “infinite linear combination” u(x, y) =

∑∞
n=0 cnun(x, y)

will also be a solution of this PDE. Notice that if we take cn = 1
n! , then u(x, y) =

∑∞
n=0

(x−y)n

n! = ex−y

which is a solution of our PDE.

The typical problem is to find a solution of a PDE which satisfies certain auxiliary conditions, for example;

uxx = 1
kut, 0 < x < a, t > 0 (Heat Equation)

Auxiliary
Conditions


u(0, t) = T0, t > 0
u(a, t) = T1, t > 0

}
Boundary Conditions

u(x, 0) = f(x), 0 < x < a Initial Condition

Our main solution technique will be the method of separation of variables, also called product method and
Fourier’s method.

Example. Solve ut − uux = 0 by separation of variables.

Assume u(x, t) = φ(x)h(t), plug into the PDE and simplify to get φ′(x) = h′(t)
h(t) . Since the left hand side

(LHS) is a function of x and RHS is a function of t, this equality will hold only if they are equal to a

constant, say λ. Solve φ′(x) = λ and h′(t)
h2(t)

= λ and plug back in the function u. Classroom discussion!

Exercise. Solve ut = uxx by the method of separation of variables. Hint: Consider the cases λ > 0, λ = 0
and λ < 0.



Chapter 1

Fourier Series (Fourier Series and Integrals in the course textbook)

1.1 Periodic Functions and Fourier Series

Definition. A function f is said to be periodic with positive period p if

1. f(x) has been defined for all x, and

2. f(x+ p) = f(x) for all x.

For a periodic function f with period p, it is easy to show that f(x−np) = f(x) = f(x+np) for n = 0, 1, · · ·
and thus a periodic function, defined as above, has many periods! Classroom discussion!

Examples: 1. PUT GRAPH HERE!
2. PUT GRAPH HERE!
3. Functions sinx and cosx are 2π-periodic. Functions sin 2πx

p and cos 2πx
p have period p and the period

of the function sin 5πx
3 is 2π

2π
3

= 6
5 .

Let f be a 2a-periodic function (of period 2a). In this chapter we want to find constants a0, an, bn,
n = 1, 2, · · · such that

f(x) = a0 +

∞∑
n=1

(
an cos

nπx

a
+ bn sin

nπx

a

)
.

Orthogonatlity Relations

Assume m and n are nonnegative integers, unless stated otherwise.

ˆ π

−π
sinnx dx = 0 for all n

ˆ π

−π
cosnx dx =

{
0, n 6= 0
2π, n = 0ˆ π

−π
sinnx cosmxdx = 0 for all n and m

ˆ π

−π
sinnx sinmxdx =

{
0, n 6= m
π, n = m

ˆ π

−π
cosnx cosmxdx =


0, n 6= m
π, n = m 6= 0
2π, n = m = 0

19
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See Review, Identities, Formulas and Theorems. These are easy to check, (do it). We will need the follow-
ing identities. See Review, Identities, Formulas and Theorems.

sin a cos b = 1
2(sin(a+ b) + sin(a− b))

cos a cos b = 1
2(cos(a+ b) + cos(a− b))

sin a sin b = 1
2(cos(a− b)− cos(a+ b))

We will use the first identity to prove the third orthogonality relation above.

ˆ π

−π
sinnx cosmxdx =

ˆ π

−π
(1

2 sin(n+m)x+ 1
2 sin(n−m)x) dx = 0, using the first orthogonality relation.

This can be treated in a more general form.

Definitions: 1. Function f(x) is an even function if f(−x) = f(x) or equivalently its graph is symmetric
about y-axis.
2. Function f(x) is an odd function if f(−x) = −f(x) or equivalently its graph is symmetric about the
origin.

Then we have

ˆ a

−a
(even function) dx = 2

ˆ a

0
(even function) dx andˆ a

−a
(odd function) dx = 0

cosx is an even function, while sinx is an odd function. We can also think of even as “+” and odd as “-”
in the following sense: even× odd = odd, odd× odd = even, even× even = even, even + even = even and
odd + odd = odd.

Each function can be written as the sum of an even function and an odd function.

f(x) =
1

2
(f(x) + f(−x))︸ ︷︷ ︸

even

+
1

2
(f(x)− f(−x))︸ ︷︷ ︸

odd

Therefore since sinnx is odd and cosmx is even, their product is odd and so
´ π
−π sinnx cosmxdx = 0.

Now suppose f is a 2π-periodic function and that f(x) = a0 +
∑∞

n=1 (an cosnx+ bn sinnx). By interchang-
ing the order of integration and infinite sum, we can show the following.

a0 =
1

2π

ˆ π

−π
f(x) dx =

{
0, f odd
1
π

´ π
0 f(x) dx, f even

For any fixed integer value m = 1, 2, · · · ,

am =
1

π

ˆ π

−π
f(x) cosmxdx =

{
0, f odd
2
π

´ π
0 f(x) cosmxdx, f even

, and

bm =
1

π

ˆ π

−π
f(x) sinmxdx =

{
2
π

´ π
0 f(x) sinmxdx, f odd

0, f even

Classroom discussion!
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Definition. Fourier series (F.S.) of 2π-periodic function f(x) is defined as

f(x) ∼ a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

where a0 = 1
2π

´ π
−π f(x) dx, an = 1

π

´ π
−π f(x) cosnx dx and bn = 1

π

´ π
−π f(x) sinnx dx for n = 1, 2, · · · .

Question: Does this series actually represent function f(x)?

Example. Find F.S. of f(x) = |x| for −π < x < π and f(x+ 2π) = f(x).

f(x) is an even function with period 2π and the graph as shown. PUT THE GRAPH HERE.

So, bn=0 and a0 = 1
2π

´ π
−π f(x) dx == 1

π

´ π
0 f(x) dx = · · · = π

2 , an = 1
π

´ π
−π f(x) cosnx dx = 2

π

´ π
0 f(x) cosnx dx =

2
π

´ π
0 x cosnx dx = · · · = 2

πn2 (cosnπ) − 1 =

{
− 4
πn2 , n odd

0, n even
, using integration-by-parts. Or, a2n = 0

and a2n−1 = − 4
(2n−1)2

for n = 1, 2, · · · . Thus

f(x) ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x .

Classroom discussion!
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1.2 Arbitrary Period and Half-Range Expansions

Definition. Let f be a periodic function of period 2a, then its F.S. is

f(x) ∼ a0 +
∞∑
n=1

(
an cos

nπx

a
+ bn sin

nπx

a

)
where a0 = 1

2a

´ a
−a f(x) dx, an = 1

a

´ a
−a f(x) cos nπxa dx and bn = 1

a

´ a
−a f(x) sin nπx

a dx for n = 1, 2, · · · .

Exercise. As we did for the 2π-periodic functions, derive above equations for a0, an, bn, n = 1, 2, · · · .

What if f is defined only on a finite interval, say (−a, a)? For example, let’s find the F.S. of f(x) ={
1, 0 < x < a
−1, −a < x < 0

. f(x) is not defined on all of the R (real numbers), so to use the above formulas,

we extend f to all of R in such a way that it will have period 2a. Call this new function f . F.S. of f on
(−a, a) is the F.S. of f on (−a, a).

PUT GRAPH HERE

Note. More often than not we simply call this new function f again.

Since f is an odd function, a0 = an = 0 and bn = 2
a

´ a
0 f(x) sin nπ x

a dx = · · · = −2
nπ (cosnπ − 1) ={

0, n even
4
nπ , n odd

or b2n = 0 and b2n−1 = 4
(2n−1)π , n = 1, 2, · · · . Thus f(x) ∼

∞∑
n=1

4

(2n− 1)π
sin

(2n− 1)πx

a
.

Classroom discussion!

If function f(x) is not defined on the interval (−a, a), then we make either an odd or an even extension of
f to all of R .

Examples: Make even and odd extensions of the following functions to the entire real-number line.
1. f(x) = x, 0 < x < 1 2. f(x) = sinx, 0 < x < π 3. f(x) = (x− 2)2, 2 < x < 3

PUT ALL GRAPHS HERE

These extensions are not unique, for example, for example 3 we could use the following extensions.

PUT GRAPHS HERE
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Since in either case evaluation of a’s and b’s will only involve integration on (0, a), we call the F.S. for
these cases Half-Range Expansion.

Definitions: Let f be a function defined on (0, a).

1. The odd extension of f to (−a, a) is fo(x) =

{
f(x), 0 < x < a
−f(−x), −a < x < 0

.

The F. sine series of f is the F. series of fo.

2. The even extension of f to (−a, a) is fe(x) =

{
f(x), 0 < x < a
f(−x), −a < x < 0

.

The F. cosine series of f is the F. series of fe.

Examples: Consider the function f , in example 2 above.

1. Find the F. cosine series of f .
Using fe, the even extension of f to all of R , we have

bn = 0

a0 = 2
2π

ˆ π

0
sinx dx = · · · = 2

π

an = 2
π

ˆ π

0
sinx cosnx dx = · · · =


0, n = 1
0, n > 1 and n odd
−4

π(n2−1)
, n > 1 and n even

=⇒

a2n = −4
π(4n2−1)

, a2n−1 = 0, n = 1, 2, · · ·

f(x) ∼ 2

π
−
∞∑
n=1

4

(4n2 − 1)π
cos 2nx

Classroom discussion!

2. Find the F. sine series of f .

The odd extension of f to all of R is sinx itself. So, F. sine series of f should be f(x) ∼ sinx.

Question. At x = π
2 , sinx = 1 and

∑∞
n=1

4
(4n2−1)π

cos 2nx =
∑∞

n=1
4(−1)n

(4n2−1)π
. Is 2

π −
4
π

∑∞
n=1

(−1)n

(4n2−1)
= 1?

Exercise. Find the F. sine series of f(x) =

{
2x
a , 0 < x ≤ a

2
2− 2x

a ,
a
2 ≤ x < a

.

Answer: f(x) ∼ 8
π2

∑∞
n=1

sin nπ
2

n2 sin nπ x
a = 8

π2

∑∞
n=1

(−1)n+1

(2n−1)2
sin (2n−1)π x

a
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Definitions: Let function f be defined on (0, a).

1. The Fourier sine series of f is
∞∑
n=1

bn sin
nπ x

a
where bn =

2

a

ˆ a

0
f(x) sin

nπ x

a
dx.

2. The Fourier cosine series of f is a0 +

∞∑
n=1

an cos
nπ x

a
where a0 =

1

a

ˆ a

0
f(x) dx and

an =
2

a

ˆ a

0
f(x) cos

nπ x

a
dx.

1.3 Convergence of Fourier Series

Definition. Let f(x) be a function and x0 ∈ R . We say that lim
x→x0

f(x) exists if

1. left limit exists ⇐⇒ f(x−0 ) = lim
x→x−0

f(x) = lim
h→0−

f(x0 + h) = lim
h→0
h<0

f(x0 + h) exits,

2. right limit exists ⇐⇒ f(x+
0 ) = lim

x→x+0
f(x) = lim

h→0+
f(x0 + h) = lim

h→0
h>0

f(x0 + h) exits, and

3. the above two limits are equal ⇐⇒ f(x−0 ) = f(x+
0 ).

Then lim
x→x0

f(x) = f(x−0 ) = f(x+
0 ).

Definition. Function f(x) is continuous at x0 if
1. f(x0) exits,
2. lim

x→x0
f(x) exits, and

3. f(x0) = lim
x→x0

f(x).

⇐⇒ f(x−0 ) = f(x+
0 ) = f(x0)

Definition. A function is continuous (everywhere) if it is continuous at each point.

Types of Discontinuity at x0- 1. Removable discontinuity; f(x−0 ) = f(x+
0 ) 6= f(x0), (f(x0 may not be

defined.)
2. Jump discontinuity; f(x−0 ) 6= f(x+

0 ), but both exist. 3. “Bad” discontinuity; f(x−0 ), f(x+
0 ) or both fail

to exist.

Examples: 1. 2.
PUT GRAPHS HERE

3. 4. 5.

PUT GRAPHS HERE

In the case of removable discontinuity at x0, if we redefine our function at x0 to be f(x0) = limx→x0 f(x),
then this new function is continuous at x0, hence the terminology “removable discontinuity”.
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Definition. A function is piecewise continuous on a finite interval (a, b), if it is bounded and continuous
on (a, b), except possibly for a finite number of jumps and removable discontinuities.

Definition. A function is piecewise continuous if it is piecewise continuous on every finite interval.

Remark. Another name for piecewise continuous is piecewise continuous.

Examples: Addition to the parts of the last example.
1. Function f is not piecewise continuous on (0, 2x0), so it is not piecewise continuous.
4. Function f is piecewise continuous on each finite interval, so it is not piecewise continuous.

If a function defined on a finite interval is piecewise continuous, then its periodic (odd or even) extension
is also piecewise continuous, for example consider

PUT GRAPHS HERE

Definition. A function f is piecewise smooth if
1. f is piecewise continuous,
2. f ′(x) exists for every x, except perhaps at a finite number of points, and
3. f ′(x) is piecewise continuous.

Examples: 1. f(x) = x
1
3 , −1 < x < 1.

f is continuous on , f ′ is not continuous on and therefore f is not piecewise smooth. Classroom discussion!

2. f(x) = |x|, −1 < x < 1.
f is continuous, although f ′(0) does not exist f ′ is piecewise continuous and therefore f is piecewise smooth.
Classroom discussion!

Theorem (Convergence Theorem, Function Hypotheses). If f(x) is piecewise smooth and periodic with
period 2a, then at each point x the F.S. corresponding to f converges and

a0 +
∞∑
n=1

(
an cos

nπx

a
+ bn sin

nπx

a

)
=

1

2

(
f(x−) + f(x+)

)
.

Remark. If f is continuous at x, then 1
2(f(x−) + f(x+)) = f(x).

Example. Show that
∞∑
n=1

4(−1)n

4n2 − 1
= 2− π.

Apply the above theorem to the F. cosine series of f(x) = sinx, 0 < x < π and then plug in x = π
2 .

Classroom discussion!
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Example. The graph of periodic function f is shown below. Draw the graph of its F. series.

PUT GRAPH HERE

Classroom discussion!

Remark. The above examples show the power of the Convergence Theorem.

Exercises: 1. Use the F.S. of f(x) = | sinx| to show that
∞∑
n=1

(−1)n

4n2 − 1
=

1

2
− π

4
.

2. Use the F. cosine series of f(x) = x2, 0 < x < π, to show that
∞∑
n=1

(−1)n+1

n2
=
π2

12
and

∞∑
n=1

1

n2
=
π2

6
.

3. Use the F. cosine series of f(x) = x4, 0 < x < π, and

∞∑
n=1

1

n2
=
π2

6
to show that

∞∑
n=1

1

n4
=
π4

90
.

4. Consider the 2a-periodic function f with f(x) =

{
−1, −a ≤ x < 0
3, 0 ≤ x < a

. Find its F. series graphically.

(Do not compute its F.S. coefficients.)

It is also useful to state convergence theorems for the F. series when f is defined on (−a, a) and both F.
sine and cosine series when f is defined on (0, a). We need to find the conditions for which the desired
extension of f meets the hypotheses of the Convergence Theorem. We must also pay special attention to
the endpoints.

Exercises: Fill in the blank.
1. Let f(x) be a function defined on (−a, a). If f is , then
F.S. corresponding to f converges and

a0 +
∞∑
n=1

(
an cos

nπx

a
+ bn sin

nπx

a

)
=

1

2

(
f(x−) + f(x+)

)
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for −a < x < a. At x = ±a, the F.S. converges to .
2. Let f be a function defined on (0, a). If f is , then F. sine
series corresponding to f converges and

∞∑
n=1

bn sin
nπx

a
=

1

2

(
f(x−) + f(x+)

)
for 0 < x < a. At x = 0 and x = a, the F. sine series converges to .
3. Let f(x) be a function defined on (0, a). If f is , then F.
cosine series corresponding to f converges and

a0 +
∞∑
n=1

an cos
nπx

a
=

1

2

(
f(x−) + f(x+)

)
for 0 < x < a. At x = 0, the F. cosine series converges to . At x = a, the F. cosine series
converges to .

1.4 Uniform Convergence

Definitions: Consider functions fn(x), n = 1, 2, · · · defined on the interval I.

1. We say that
∞∑
n=1

fn(x) converges to f(x) pointwise in the interval I if at each point x in I, lim
N→∞

∣∣∣∣∣
N∑
n=1

fn(x)− f(x)

∣∣∣∣∣ =

0 .

N∑
n=1

fn(x) is called the Nth partial sum of
∞∑
n=1

fn(x) and is denoted by SN (x); sum of the 1st N term.

2. We say that
∞∑
n=1

fn(x) converges to f(x) uniformly in the interval I if lim
N→∞

Max
x∈I
|SN (x)− f(x)| = 0 .

Note. This maximum might not exist, in that case we use supremum; the least number greater than
|SN (x)− f(x)| for every x, in place of it.

Lemma. If

∞∑
n=1

fn(x) converges uniformly to, say, f(x) and if fn(x) are continuous functions, then f(x) is

also continuous.

Examples: Examine convergence of F.S. of following functions graphically.

1. f(x) =

{
1, 0 < x < π
−1, −π < x < 0

f(x) ∼
∞∑
n=1

4

(2n− 1)π
sin(2n− 1)x

2. g(x) = |x|, −π < x < π

g(x) ∼ π

2
− 4

π

∞∑
n=1

1

(2n− 1)2
cos(2n− 1)x

PUT ALL GRAPHS HERE

F.S. does not converge uniformly to f(x). F.S. converges uniformly to g(x).

Theorem 1. (Convergence Theorem, F. Coefficients Hypotheses)

Consider the series a0+
∞∑
n=1

(
an cos nπxa + bn sin nπx

a

)
. If

∞∑
n=1

(|an|+ |bn|) converges then this series converges

uniformly (and hence to a continuous function) and if it is the F.S. of the function f(x), it converges
uniformly to f(x).
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Example. Use the above theorem to show that the F.S. of g(x) in the last example converges uniformly
to g(x).

Classroom discussion!

Remark. Notice that for the function f in the last example,
∞∑
n=1

(|an|+ |bn|) =
∞∑
n=1

4
(2n−1)π does not

converge and hence the above uniform convergence theorem does not hold.

The following theorems state conditions under which F.S. of a function converges uniformly. These condi-
tions do not involve the F.S. itself.

Theorem 2. If function f(x) is periodic, continuous, and has a piecewise continuous derivative, then
F.S. corresponding to f converges uniformly to f on the entire real axis.

Theorem 3. Let f(x) be a function defined on (−a, a) such that

1. It is continuous, bounded (bdd↔ |f(x)| < M for all x and some M > 0) and has piecewise continuous
derivative, and

2. f((−a)+) = f(a−).

Then the F.S. of f converges uniformly to f on the interval (−a, a). (F.S. converges to f((−a)+) = f(a−)
at x = ±a.)

Theorem 4. Let f(x) be a function defined on (0, a) such that

1. It is continuous, bounded, and has piecewise continuous derivative, and

2. f(0+) = f(a−) = 0

Then the F. sine series of f converges uniformly to f in the interval (0, a). (F. sine series converges to zero
at x = 0 and x = a.)

Theorem 5. Let f(x) be a function defined on (0, a) such that it is continuous, bounded, and has
piecewise continuous derivative. Then the F. cosine series of f converges uniformly to f in the interval
(0, a). (F. cosine series converges to f(0+) at x = 0 and to f(a−) at x = a.)

Exercises: 1. Show that f(x) = |x|, −π < x < π, satisfies the hypothesis of theorem 3.
2. Show that f(x) = sinx, 0 < x < π, satisfies the hypothesis of both theorems 4 and 5. What are its F.
sine and cosine series? Are they equal?

1.5 Operations on Fourier Series

Let f(x) be a 2a-periodic function and a0 +
∞∑
n=1

(
an cos nπxa + bn sin nπx

a

)
its Fourier series.

Theorem 1. The F.S. of function cf(x) has coefficients ca0, can and cbn, where c is any constant.
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Theorem 2. The Fourier coefficients of the sum f(x)+g(x) are the sums of the corresponding coefficients
of F.S. of f(x) and g(x).

Exercise. Prove theorems 1 and 2, by direct computation of F. coefficients of cf(x) and f(x) + g(x).

Theorem 3. If f(x) is a 2a-periodic piecewise continuous function, then F.S. of f may be integrated
term by term. That is,ˆ d

c
f(x) dx =

ˆ d

c
a0 dx+

∞∑
n=1

ˆ d

c

(
an cos nπxa + bn sin nπx

a

)
dx.

Theorem 4. If f(x) is a 2a-periodic piecewise continuous function and function g(x) is also piecewise
continuous on (c, d), thenˆ d

c
f(x)g(x) dx =

ˆ d

c
a0g(x) dx+

∞∑
n=1

ˆ d

c

(
an cos nπxa + bn sin nπx

a

)
g(x) dx.

Remarks: 1. The hypotheses in theorems 3 and 4 are weaker than that of the Convergence Theorem.
We are not requiring convergence of the F.S. to the function!
2. The term-by-term integration of a F.S. may not result in another F. series!

Theorem 5. (Uniqueness Theorem) If f(x) is periodic and piecewise continuous, then its F.S. is unique.

Remark. If f(x), 0 < x < a is piecewise continuous, then its F. sine and cosine series are unique.

Example. Consider f(x) = |x|, −π < x < π. Its F.S. is f(x) = π
2 −

4
π

∞∑
n=1

1
(2n−1)2

cos(2n− 1)x (equality is

due to convergence theorem).

1. Find F.S. of h(x) = π2

8 −
π
4 f(x), −π < x < π.

2. Evaluate

ˆ x

0
h(t) dt, by use of theorem 3.

3. Evaluate

ˆ x

0
h(t) dt, 0 < x < π directly.

4. Find F. sine series of g(x) = π
8x(π − x), 0 < x < π.

5. Show that 2
π

´ π
0 g(x) sin(2n− 1)x dx = 1

(2n−1)3
, n = 1, 2, · · · .

6. Show that
∞∑
n=1

(−1)n+1

(2n−1)3
= π3

32 .
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Classroom discussion!

In the following exercise, we will see some issues that arise from term-by-term integration of a F.S., including
not being a F. series.

Exercise. The F. sines series of f(x) = x, 0 < x < π, is x =
∞∑
n=1

2(−1)n+1

n sinnx, 0 ≤ x < π. (Equality is

due to the convergence theorem.)

1. Show x2 = −
∞∑
n=1

4(−1)n

n2 +

∞∑
n=1

4(−1)n

n2 cosnx, 0 < x < π.



CHAPTER 1. FOURIER SERIES 32

2. Find the value of −
∞∑
n=1

4(−1)n

n2 by noticing that it is the constant in the F. cosine series of g(x) = x2,

0 < x < π.

3. Using earlier parts, show that the F. cosine series of g(x) = x2, 0 < x < π, is g(x) = π2

3 +
∞∑
n=1

4(−1)n

n2 cosnx, 0 ≤ x ≤ π, and use it to show x3 = π2x+

∞∑
n=1

12(−1)n

n3 sinnx, 0 < x < π. (Note: The

series π2x+
∞∑
n=1

12(−1)n

n3 sinnx is not a F. series!)

4. Use earlier parts to find the F. sine series of h(x) = x3, 0 < x < π.

The following exercise demonstrates a very interesting property of F. coefficients.

Exercises: 1. Let f be an odd periodic piecewise continuous function with period 2a. Show that

1
a

ˆ a

−a
f2(x) dx =

∞∑
n=1

b2n, where bn’s are the coefficients of F. sine series of f .

Remark. This is a form of Parseval’s equality.

2. Let f be an odd periodic piecewise continuous function with period 2a. Show that lim
n→∞

bn = 0, where

bn’s are the coefficients of F. sine series of f . Hint: Divergence Test - If

∞∑
n=1

cn converges, then lim
n→∞

cn = 0.

(If lim
n→∞

cn 6= 0, then
∞∑
n=1

cn diverges.)

We will use the following result when we apply comparison theorem to series involving F. coefficients.

Lemma. If sequence {bn}∞n=1 converges then it is bounded. That is, there exists a number M > 0 such
that |bn| < M for every n.

The following example demonstrates that term-by-term differentiation of a F. series is not always possible.

Example. The F. sines series of f(x) = x, 0 < x < a, is x =
∞∑
n=1

2a
nπ (−1)n+1 sin nπx

a , 0 ≤ x < a. (Equality

is due to the convergence theorem.) Show that the F. series of f ′(x) is not the term-by-term differentiated
F. series of f(x).

Classroom discussion!

Theorem 6. (Term-by-Term Differentiation Theorem, Function Hypotheses) If f(x) is 2a-periodic, con-
tinuous, and piecewise smooth, then the term-by-term differentiated F.S. of f(x) converges to f ′(x) at
every point x where f ′′(x) exists.

f ′(x) =

∞∑
n=1

(
−nπ

a an sin nπx
a + nπ

a bn cos nπxa
)
, where f ′′(x) exists.
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Example. Find the derivative of π2−
4
π

∞∑
n=1

1
(2n−1)2

cos(2n−1)x using the fact that it is the F.S. of f(x) = |x|,

−π < x < π.

Classroom discussion!

Theorem 7. (Term-by-Term Differentiation Theorem, F. Coefficients Hypotheses) If f(x) is periodic

with F. coefficients a0, an and bn, and if the series

∞∑
n=1

(
|nkan|+ |nkbn|

)
converges for an integer k ≥ 1,

then f has continuous derivatives f ′, · · · , f (k) whose F.S. are the corresponding term-by-term differentiated
series of f .

Remark. Suppose the above theorem holds. Then, the F. coefficient of f (k)(x) are±(nπa )kan and±(nπa )kbn.

Also,
∞∑
n=1

(
| ± (nπa )kan|+ | ± (nπa )kan|

)
= (πa )k

∞∑
n=1

(
|nkan|+ |nkbn|

)
converges. This means that not only

the F.S. of f (k)(x) is obtained by k term-by-term differentiation of the F.S. of f(x), but also that the F.S.
of f (k)(x) is equal to the function f (k)(x) itself, due to theorem 1 in section 1.4.

Example. Given u(x) ∼
∞∑
n=1

Me−n
2t sinnx, where M and t are fixed positive constants. Find the F. series

of d2u
dx2

. Discuss the convergence of the F. series of d2u
dx2

.

Classroom discussion!

The theorems in this section for interchanging the order of summation and integration or differentiation
are for F. series only and are based on the following general results.

Theorem 8. (Interchanging Integral and Summation) See Review, Identities, Formulas and Theorems.

Theorem 9. (Interchanging Differentiation and Summation) See Review, Identities, Formulas and The-
orems.
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A convenient way to show uniform convergence is through Weierstrass M Test.

Theorem 10. (Weierstrass M Test) See Review, Identities, Formulas and Theorems.

Note. Theorems 8-10 are not in the textbook, but are stated in Review, Identities, Formulas and Theorems.

In the problem below, we need to find the derivative of a series which is not a F.S. with the respect to the
variable we must differentiate. In this case, we will use the above theorem for interchanging differentiation
and summation.

Example. (Mathematical Justification) Let f be an odd, periodic, piecewise smooth function with F. sine

series coefficients bn, n = 1, 2, · · · . Show that the function defined by u(x, t) =

∞∑
n=1

bne
−n2t sinnx satisfies

the following.

a. ∂2u
∂x2

= ∂u
∂t , 0 < x < π, t > 0

b. u(0, t) = u(π, t) = 0, t > 0

c. u(x, 0) = 1
2(f(x−) + f(x+)), 0 < x < π

Classroom discussion!
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Chapter 2

The Heat Equation

2.1 Derivation and Boundary Conditions

We want to obtain the equation governing the flow of the heat in a thermally conducting rod whose solution
gives the temperature at any given position on the rod at any given time.

Assume the rod has a uniform cross section and that the temperature does not vary form point to point
in a cross section. Therefore the temperature in the rod will only depend on position x and time t.

PUT GRAPH HERE

We will make use of the following.

1. The law of Conservation of Energy - The amount of heat which enters a region plus what is gen-
erated inside is equal to the amount of the heat which leaves plus the amount stored; Heat in +
Heat generated = Heat out + Heat stored. This is equally valid in terms of rates of heat per unit of
time instead of amounts of heat.

2. The rate of heat stored in a body is proportional to the mass of that body and to the rate of change
of temperature.

3. Fourier’s Law - Heat flows in the direction of decreasing temperature at a rate proportional to the
gradient of the temperature, (so heat flow is positive when temperature gradient is negative.)

Notation - H = Heat: calorie, Joule, ... ; t = time: second, ...; T = Temperature: ◦C, ◦F , ...
; m = Mass: gram, slug, ... ; L = length: cm, ft, ... ; ρ = Density = mass

volume
:

gram
cm3 , ... ;

c = Heat Capacity per unit of Mass: cal
gram ◦C

, ... ; κ (“kappa”) = Thermal Conductivity: cal
sec cm ◦C ,

... ; k (small letter k) = Diffusivity = κ
c ρ : cm2

sec .

Consider a slice of the rod which lies between x and x+ ∆x. Let q(x, t) be the rate of heat flow at point x

and time t: cal
sec cm2 , ..., and assume q is positive when heat flow to the right. Let u(x, t) be the temperature

at point x and time t: ◦C, ... .

PUT GRAPH HERE

The rate at which heat is entering the slice through the surface at x with area A is Aq(x, t): cal
sec , ..., and

the rate at which heat is leaving the slice through the surface at x+ ∆x is Aq(x+ ∆x, t): cal
sec , ... .

36
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The heat stored in the slice is c ρA∆x︸ ︷︷ ︸
mass

∂u

∂t
(x, t)︸ ︷︷ ︸

rate of
change
of temp

: cal
sec , ... .

If the rate of the heat generated per unit of volume is g: cal
sec cm3 , ..., then rate at which heat is generated

in the slice is A∆x g: cal
sec , ... .

Thus, by the law of Conservation of Energy we have

Aq(x, t) +A∆x g = Aq(x+ ∆x, t) + c ρA∆x ∂u
∂t , cal

sec , and so
q(x+ ∆x, t)− q(x, t)

∆x
− g = −c ρ ∂u

∂t

Taking the limit of both sides as ∆x→ 0 we get

∂q

∂x
− g = −c ρ ∂u

∂t
.

By the Fourier’s law q = −κ∂u∂x , and so ∂q
∂x = −κ∂2u

∂x2
. Thus

∂2u

∂x2
+
g

κ
=
c ρ

κ

∂u

∂t
, t > 0.

If no heat is generated, g = 0, and letting k = κ
c ρ we get

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0.

Now, ∂2u
∂x2

= 1
k
∂u
∂t , 0 < x < a, t > 0, describes the temperature u in a rod of length a with uniform

properties and cross section, in which no heat is generated, and whose cylindrical surface is insulated. This
equation has many solutions: u(x, t) = x2 + 2kt, u(x, t) = e−kt sinx. We want to have a unique solution,
therefore we place auxiliary conditions on our PDE:

1. The initial temperature distribution in the rod, (called initial condition, I.C., or initial value, I.V.).

2. What is happening at the ends of the rod, (boundary condition, B.C., or boundary value, B.V.)?

I.C.: u(x, 0) = f(x), 0 < x < a.
B.C.:

1. Dirichlet B.C. (also called B.C. of the 1st kind)
u(0, t) = T0, u(a, t) = T1, t > 0 (fixed, end temperatures)

2. Neumann B.C. (also called B.C. of the 2nd kind)
∂u
∂x(0, t) = φ1(t), ∂u

∂x(a, t) = φ2(t), t > 0
φ1 or φ2 = 0 corresponds to an insulated surface at the end x = 0 or x = a, respectively.

3. Robin B.C. (also called B.C. of the 3rd kind)
c1u(0, t) + d1

∂u
∂x(0, t) = ψ1(t), t > 0

c2u(a, t) + d2
∂u
∂x(a, t) = ψ2(t), t > 0

For convection at the end x = a, hu(a, t)+κ ∂u
∂x(a, t) = hT1(t), where h is convection coefficient: cal

cm2 sec ◦C ,
..., and T1(t) is the temperature of the medium surrounding the end at x = a. Similarly for convection at
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the end x = 0, hu(0, t)− κ ∂u
∂x(0, t) = hT0(t). Classroom discussion!

If a B.C. involves more than one boundary point, it is called a mixed boundary condition. For example:
u(0, t) = u(a, t) and ∂u

∂x(0, t) = ∂u
∂x(a, t). Of course, there are many more possible boundary conditions.

An Initial Value - Boundary Value Problem:

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, t > 0

hu(a, t) + κ
∂u

∂x
(a, t) = hT1, t > 0

u(x, 0) = f(x), 0 < x < a

There is exactly one and only one solution to a complete I.V. - B.V. problem.

2.2 Steady-State Temperatures

The steady-state temperature distribution is a time independent function v(x) which is a solution of the
time independent heat equation that satisfies the B.C.’s.

Physically, when heat conduction through a body is left undisturbed for a long time, the variation of the
temperature with respect to time dies out and we achieve steady-state temperature distribution. In this
case we expect

lim
t→∞

u(x, t) = v(x) and lim
t→∞

∂u

∂t
= 0.

Examples: State and solve (find) the steady-state problem corresponding to each of the following.

1.
∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, u(a, t) = T1, t > 0

u(x, 0) = f(x), 0 < x < a

The S-S problem is

d2v

dx2
= 0, 0 < x < a

v(0) = T0, v(a) = T1

and its solution is v(x) = (T1 − T0)xa + T0. Classroom discussion!



CHAPTER 2. THE HEAT EQUATION 39

2.
∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = u(a, t), t > 0

u(x, 0) = f(x), 0 < x < a

The S-S problem is

d2v

dx2
= 0, 0 < x < a

v(0) = v(a)

and its solution is v(x) = B. Classroom discussion!

In the last example, the mathematical solution of the S-S problem is not unique. However, due to physical
considerations there will be only one acceptable S-S solution!

The transient temperature distribution is the difference between the temperature u(x, t) and the steady-
state temperature v(x): w(x, t) = u(x, t)−v(x). Of course, it is called transient since physically we expect
it to die out as t→∞.

Example. State the problem satisfied by the transient temperature distribution for the example 1 above.

The transient problem is

∂2w

∂x2
=

1

k

∂w

∂t
, 0 < x < a, t > 0

w(0, t) = 0, w(a, t) = 0, t > 0

w(x, 0) = f(x)− v(x), 0 < x < a.

Classroom discussion!
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Therefore, if we find the steady-state temperature and the transient temperature, then their sum will be
the solution of the heat equation. Notice that the PDE and the B.C.’s which the transient temperature
satisfies are linear and homogeneous.

2.3 Example: Fixed End Temperatures

We want to solve

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, u(a, t) = T1, t > 0 (Fixed, End Temperatures)

u(x, 0) = f(x), 0 < x < a.

The solution u(x, t) is the sum of the steady-state solution v(x) and the transient solution w(x, t). The
S-S problem is

d2v

dx2
= 0, 0 < x < a

v(0) = T0, v(a) = T1

with the solution v(x) = (T1 − T0)xa + T0. The transient problem is

∂2w

∂x2
=

1

k

∂w

∂t
, 0 < x < a, t > 0

w(0, t) = 0, w(a, t) = 0, t > 0

w(x, 0) = f(x)− v(x), 0 < x < a.

we will solve the transient problem by the method of separation of variables (also called the product method
and the Fourier’s method). For this method to work it is essential to have a linear homogeneous PDE and
boundary conditions of type 1, 2 or 3, to be homogeneous.

Assume w(x, t) = φ(x)h(t). Plug into PDE to get φ′′(x)
φ(x) = 1

k
h′(t)
h(t) . Since the left-hand side is a function

of x and the right-hand side is a function of t, then this equality can only hold if the two sides have the
same constant value, say −λ. (The use of minus sign “−” is due to the fact that we will always have
−λ≤0 !) Plug w into the boundary conditions to get φ(0) = φ(a) = 0 since otherwise h(t) = 0, resulting in
w(x, t) = 0 which is not acceptable unless w(x, 0) = f(x)− v(x) = 0. Classroom discussion!

We know have two problems to solve.
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h′(t)

h(t)
= −λk, t > 0 φ′′(x) = −λφ(x), 0 < x < a

φ(0) = φ(a) = 0

The first problem is a separable ODE and its solution is h(t) = c e−λkt. Classroom discussion!

The second problem is a second order linear ODE with constant coefficients. Its characteristic equation is
r2 = −λ and its solution will depend on the sign of λ.

I. λ < 0. Then r = ±
√
−λ and we will get φ(x) = 0 resulting in w(x, t) = 0. Classroom discussion!

II. λ = 0. Then φ(x) = 0 resulting in w(x, t) = 0. Classroom discussion!

III. λ > 0. Let λ = µ2 with µ > 0. Then r = ±µ i and we will get φ(x) = sinµx with µ = nπ
a for

n = 1, 2, · · · . Classroom discussion!

Set µn = nπ
a , φn(x) = sinµnx and hn(t) = e−µ

2
nkt for n = 1, 2, · · · . Then each of the functions

wn(x, t) = sinµnx e
−µ2nkt is a transient solution. Since in the transient problem, the PDE and bound-

ary conditions are linear and homogeneous, any finite linear combination of wn’s will also be a solution
of the transient problem. This is called the superposition principle. Using the superposition principle, we
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expect w(x, t) =

∞∑
n=1

bnwn(x, t) =

∞∑
n=1

bn sinµnx e
−µ2nkt to satisfy the PDE and boundary conditions of the

transient problem. What is left to do is to find bn’s such that w(x, 0) = f(x)− v(x) for 0 < x < a.

∞∑
n=1

bn sin
nπx

a
= f(x)− v(x), 0 < x < a

Classroom discussion!

If f(x) is sectionally continuous, then F. sine series of f(x) − v(x) is unique (because fo(x) − vo(x) will
be sectionally continuous since v(x) is continuous). Therefore, bn’s are the F. sine series coefficients of the
function f(x)− v(x), 0 < x < a:

bn =
2

a

ˆ a

0
(f(x)− v(x)) sin

nπx

a
dx.

Finally,

u(x, t) = T0+(T1−T0)
x

a
+
∞∑
n=1

bn sin
nπx

a
e−

n2π2

a2
kt with bn =

2

a

ˆ a

0

[
f(x)−

(
T0 + (T1 − T0)

x

a

)]
sin

nπx

a
dx.

Remarks: 1. For a graph of u(x, t), see your book.
2. If f is not continuous, but sectionally smooth, then u(x, 0) = 1

2(f(x−) +f(x+)) at all x values at which
f has a hole or a jump.

Questions: 1. Does this infinite sum converge?
2. Does the u we have found satisfy the PDE, boundary conditions and initial conditions?
3. Is this solution unique?

The positive answer to these three questions is called “Mathematical Justification”. In this class, we will
call Mathematical Justification the proof for positive answer to the first two questions.

2.4 Example: Insulated Bar

We want to solve

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(a, t) = 0, t > 0 (Insulated Ends)

u(x, 0) = f(x), 0 < x < a.

This is a (linear) homogeneous PDE with (linear) homogeneous B.C.’s, therefore S-S temperature is not
needed. Assume u(x, t) = φ(x)h(t). Plug into PDE and boundary conditions to get the following two
problems. Classroom discussion!
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h′(t)

h(t)
= −λk, t > 0 φ′′(x) = −λφ(x), 0 < x < a

φ′(0) = φ′(a) = 0

The first problem is a separable ODE and its solution is h(t) = c eλkt. Classroom discussion!

The second problem is a second order linear ODE with constant coefficients. Its characteristic equation is
r2 = −λ. Now, the solution will depend on the sign of λ.

I. λ < 0. Then r = ±
√
−λ and we will get φ(x) = 0 resulting in u(x, t) = 0. Classroom discussion!

II. λ = 0. Then φ(x) = Constant resulting in u(x, t) = Constant. Classroom discussion!

III. λ > 0. Let λ = µ2 with µ > 0. Then r = ±µ i and we will get φ(x) = cosµx with µ = nπ
a for

n = 1, 2, · · · . Classroom discussion!
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Remark. Your book uses −λ2 in place of −λ. That is, it assumes, a priori, that −λ ≤ 0. We will not
make this assumption. First, we will solve the problem, as above, then we will find the sign of λ using
the Sturm-Liouville theorem, and eventually just use the result from the Review, Identities, Formulas and
Theorems.

Set µn = nπ
a , φn(x) = cosµnx and hn(t) = e−µ

2
nkt for n = 0, 1, · · · . Then each of the functions

un(x, t) = cosµnx e
−µ2nkt is a solution. Notice this includes the case λ = 0, for which u0(x, t) = 1 is,

indeed, a solution. However, it is easier to treat the case λ = 0 or u0(x, t) = 1, separately. Since the
PDE and boundary conditions are linear and homogeneous, by the superposition principle, we expect

u(x, t) = a0(1) +
∞∑
n=1

anun(x, t) = a0 +
∞∑
n=1

an cosµnx e
−µ2nkt. What is left to do is to find a0 and an’s such

that u(x, 0) = f(x) for 0 < x < a.

a0 +
∞∑
n=1

an cos
nπx

a
= f(x), 0 < x < a

Classroom discussion!

If f(x) is sectionally continuous, then F. cosine series of f(x) is unique (because fe(x) will be sectionally
continuous). Therefore, an’s are the F. cosine series coefficients of the function f(x), 0 < x < a:

a0 =
1

a

ˆ a

0
f(x) dx and an =

2

a

ˆ a

0
f(x) cos

nπx

a
dx.

Finally,

u(x, t) = a0 +

∞∑
n=1

an cos
nπx

a
e−

n2π2

a2
kt with a0 and an as above.

Note. For a graph of u(x, t), see your book.

Question. What happens to u(x, 0) = f(x), if f is sectionally smooth but not continuous?

Exercises: 1. Show that lim
t→∞

u(x, t) = a0 =
1

a

ˆ a

0
f(x) dx. Hint: You may interchange the order of the

summation and that of the limit and assume limn→∞ an = 0.
2. Do the mathematical justification for this problem. Hint: See the last mathematical justification
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problem and assume limn→∞ an = 0.
3. Let f be an even 2a-periodic sectionally continuous function with F. cosine series coefficients a0, an,
n = 1, 2 · · · . Show that lim

n→∞
an = 0. Hint: Start with f(x) ∼ a0 +

∑∞
n=1 an cos nπxa and

´ a
0 f

2(x) dx =´ a
0 a0 f(x) dx+

∑∞
n=1 an

´∞
0 f(x) cos nπxa dx. This results in another form of the Parseval’s equality.

2.5 Example: Different Boundary Conditions

First, we will discuss F. series of particular extensions of a function f(x), defined on (0, a), to the inter-

val (0, 2a) whose F. sine and cosine series will be of the form
∞∑
n=1

bn sin (2n−1)πx
2a and

∞∑
n=1

an cos (2n−1)πx
2a ,

respectively. Then, we will use them to solve certain I.V.-B.V. problems with mixed boundary conditions.

Examples: 1. Show that if f is a sectionally continuous function and f(x) =
∞∑
n=1

bn sin (2n−1)πx
2a for

0 < x < a, then bn = 2
a

ˆ a

0
f(x) sin (2n−1)πx

2a dx.

Let m be a positive integer. Multiply both sides by sin (2m−1)πx
2a and integrate with respect to x from x = 0

to x = a. Interchange the order of summation and integration and use the orthogonal properties of sine
functions. Classroom discussion!

2. Let f be an arbitrary sectionally smooth and continuous function on 0 < x < a. Show that

f(x) =
∞∑
n=1

bn sin (2n−1)πx
2a where bn = 2

a

ˆ a

0
f(x) sin (2n−1)πx

2a dx.

First extend f to the interval (0, 2a) by reflecting it about the line x = a. Call this function F : F (x) ={
f(x), 0 < x < a
f(2a− x), a < x < 2a

. Then find the F. sine series coefficients of F and simplify to get an integral

over the interval 0 < x < a. Apply the convergence theorem of the F. sine series of F on the interval
0 < x < a, in which F (x) = f(x). Classroom discussion!
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Exercises: 1. Show that if f(x) =
∞∑
n=1

an cos (2n−1)πx
2a for 0 < x < a, then an = 2

a

ˆ a

0
f(x) cos (2n−1)πx

2a dx.

Hints: Multiply both sides by cos (2m−1)πx
2a , where m is a positive integer, and integrate both sides with

respect to x from x = 0 to x = a. Interchange the order of integration and summation. Use the orthogonal
properties of cosine functions.
2. Let f be an arbitrary sectionally smooth and continuous function on 0 < x < a. Show that f(x) =
∞∑
n=1

an cos (2n−1)πx
2a where an = 2

a

ˆ a

0
f(x) cos (2n−1)πx

2a dx.

Hints: First extend f to F (x) =

{
f(x), 0 < x < a
−f(2a− x), a < x < 2a

on 0 < x < 2a. Then find the F. cosine

series coefficients of F and simplify to get an integral over the interval 0 < x < a. Apply the convergence
theorem of the F. cosine series of F on the interval 0 < x < a, in which F (x) = f(x).

Remark. If f(x), 0 < x < a, is sectionally continuous, then its F.S. of the form

∞∑
n=1

bn sin (2n−1)πx
2a or

∞∑
n=1

an cos (2n−1)πx
2a are unique. This is due to the uniqueness of F. series of periodic, sectionally continuous

functions.

Now, let’s solve the following I.V.-B.V. problem satisfied by the temperature in a uniform rod with initial
temperature distribution f(x), one end at fixed temperature T0, and insulated at the other end.

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, t > 0
∂u

∂x
(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a

We will solve this problem and also state the steps needed to solve a general heat equation with initial and
boundary conditions.
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1. If the PDE, a B.C., or both are not homogeneous (assuming both are already linear), find the steady-
state temperature distribution v(x). If this step is not needed go to step 3.

d2v

dx2
= 0, 0 < x < a

v(0) = T0

dv

dx
(a) = 0

The S-S temperature distribution is v(x) = T0. Classroom discussion!

2. Determine the I.V.-B.V. problem satisfied by the transient temperature distribution w(x, t). Class-
room discussion!

∂2w

∂x2
=

1

k

∂w

∂t
, 0 < x < a, t > 0

w(0, t) =
∂w

∂x
(a, t) = 0, t > 0

w(x, 0) = f(x)− T0, 0 < x < a

3. Use the method of separation of variables.

(a) Write w(x, t) = φ(x)h(t) (u in place of w, if step 1 was not needed) and plug it into the PDE
and boundary conditions. The PDE will reduce to two ODE’s, using a constant of separation,
say −λ. One ODE involves T and is first order and the other is second order and involves φ. The
boundary conditions will reduce to boundary conditions for the second order ODE. Classroom
discussion!
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h′(t)

h(t)
= −λk, t > 0 φ′′(x) = −λφ(x), 0 < x < a

φ(0) = 0

φ′(a) = 0

(b) Solve for T . Classroom discussion!

h(t) = C e−λkt

(c) Solve for φ, by considering negative, zero, and positive values of λ. In this step we will also
find values of the constant of separation. This step will become shorter later on by use of the
Sturm-Liouville theorem, and eventually will be done instantly by use of the result from Review,
Identities, Formulas and Theorems.

i. λ < 0. Classroom discussion!

φ(x) ≡ 0 =⇒ w(x, t) ≡ 0, not acceptable!

ii. λ = 0. Classroom discussion!

φ(x) ≡ 0 =⇒ w(x, t) ≡ 0, not acceptable!

iii. λ > 0. Let λ = µ2 with µ > 0. Classroom discussion!
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µ = (2n−1)π
2a , φ(x) = C2 sinµx for n = 1, 2, · · · .

(d) Label the solutions: µn = (2n−1)π
2a , xn(x) = sinµnx, hn(t) = e−µ

2
nkt and wn(x, t) = φn(x)hn(t),

for n = 1, 2, · · · . (We can use 1 for the constant coefficients. This step can be skipped or
combined with the next one!)

(e) Use the superposition principle to make a linear combination of the solutions in the last step
and find the constants using the initial condition.

w(x, t) =
∞∑
n=1

bnwn(x, t) =
∞∑
n=1

bn sin (2n−1)πx
2a e−

(2n−1)2π2

4a2
kt

w(x, 0) =

∞∑
n=1

bn sin (2n−1)πx
2a = f(x)− T0

Classroom discussion!

bn = 2
a

ˆ a

0
(f(x)− T0) sin (2n−1)πx

2a dx

4. The solution is u(x, t) = v(x) + w(x, t).

u(x, t) = T0 +
∞∑
n=1

bn sin (2n−1)πx
2a e−

(2n−1)2π2

4a2
kt where bn = 2

a

ˆ a

0
(f(x)− T0) sin (2n−1)πx

2a dx

5. Mathematical Justification. (We will do this only if the problem specifically asks for it). Classroom
discussion!
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2.6 Example: Convection

We want to solve

∂2u

∂x2
=

1

k

∂u

∂t
, 0 < x < a, t > 0

u(0, t) = T0, t > 0 (Fixed Temp T0 at the end x = 0)

κ
∂u

∂x
u(a, t) + hu(a, t) = hT1, t > 0 (Convection to a medium at Temp T1 at the end x = a)

u(x, 0) = f(x), 0 < x < a

with k, κ and h positive constants.

The solution is u(x, t) = v(x) + w(x, t) where

d2v

dx2
= 0, 0 < x < a

v(0) = T0

κv′(a) + hv(a) = hT1

and
∂2w

∂x2
=

1

k

∂w

∂t
, 0 < x < a, t > 0

w(0, t) = 0, t > 0

κ
∂w

∂x
(a, t) + hw(a, t) = 0, t > 0

w(x, 0) = f(x)− v(x), 0 < x < a.

Classroom discussion!
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v(x) = T0 + h(T1−T0)
κ+ha x.

Let w(x, t) = φ(x)h(t) and apply the method of separation of variables. Discuss the three cases for the
constant of separation. Classroom discussion!

For n = 1, 2, · · · , λ = −µ2
n where µn’s are the positive solutions of tanµa = −κ

hµ and hn(t) = e−µ
2
nkt,

φn(x) = sinµnx and wn(x, t) = φn(x)hn(t). Use the superposition principle and apply the initial condition.
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w(x, t) =

∞∑
n=1

bnwn(x, t) =

∞∑
n=1

bn sinµnx e
−µ2nkt

w(x, 0) =

∞∑
n=1

bn sinµnx = f(x)− v(x)

Show orthogonality of functions {sinµnx}∞n=1 and use it to find the constant bn’s. Classroom discussion!

u(x, t) = T0 + h(T1−T0)
κ+ha x+

∞∑
n=1

bn sinµnx e
−µ2nkt where bn =

ˆ a

0

(
f(x)− T0 − h(T1−T0)

κ+ha x
)

sinµnx dxˆ a

0
sin2 µnx dx

Exercise. Show that

ˆ a

0
sin2 µnx dx =

a

2
+

κ

2h
cos2 µna.

2.7 Sturm-Liouville Problem

Definition. The Sturm-Liouville (S-L) problem, or S-L eingenvalue problem (EVP) is
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d

dx

[
s(x) dφdx

]
− q(x)φ+ λp(x)φ = 0, l < x < r

α1φ(l)− α2φ
′(l) = 0

β1φ(r) + β2φ
′(r) = 0

or

d

dx

[
s(x) dφdx

]
− q(x)φ+ λp(x)φ = 0, l < x < r

φ(l) = φ(r)

s(l)φ′(l) = s(r)φ′(r)

where

a. s(x), s′(x), q(x) and p(x) are continuous for l ≤ x ≤ r,

b. s(x) > 0 and p(x) > 0 for l ≤ x ≤ r,

c. α2
1 +α2

2 > 0 (or, α1 and α2 are not both zero) and β2
1 +β2

2 > 0 (or, β1 and β2 are not both zero), and

d. The parameter λ occurs only where shown.

Remark. Your textbook uses “λ2” in place of “λ”. We will never do that because it implies, in our
notation, that λ ≥ 0. This is something that must be proven!

Notes: 1. The above problem with the boundary conditions on the left side is called a Regular S-L EVP.
2. The above problem with the boundary conditions on the right side (periodic B.C.’s) is called a Irregular
S-L EVP.
3. If s(x), s′(x), q(x) and p(x) are continuous only on l < x < r, or either s(x) or p(x) is positive only on
l < x < r, then above problem with the boundary conditions on the left side is called a Singular S-L EVP.

Definition. The values of λ for which the S-L EVP has a nonzero solution are called eigenvalues and the
corresponding nonzero solutions φ are called eigenfunctions.

The following two theorems are for the Regular S-L EVP: α1φ(l)− α2φ
′(l) = 0, β1φ(r) + β2φ

′(r) = 0.

Theorem 1. Consider the Regular Sturm-Liouville Problem.

a. The eigenvalues λ are real-valued.

b. There are infinitely many different eigenvalues λ1, λ2, · · · and an infinite number of eigenfunctions
φ1, φ2, · · · corresponding to them.

c. The eigenfunctions are unique up to a constant multiple (If φ and ψ are two eigenfunctions corre-
sponding to the same eigenvalue λ, then φ = cψ for some nonzero constant c.)

d. If n 6= m, the eigenfunctions φn and φm are orthogonal with weight function p(x):

ˆ r

l
φn(x)φm(x)p(x) dx =

0 for n 6= m.

Proof of Orthogonality of Eigenfunctions - Classroom discussion!
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Theorem 2. Consider the Regular Sturm-Liouville Problem.

a. lim
n→∞

λn =∞.

b. If the eigenvalues are numbered in order λ1 < λ2 < · · · , then the eigenfunction φn corresponding to
λn has exactly n− 1 zeros in the interval l < x < r (endpoints excluded).

c. If q(x) ≥ 0, α1α2 ≥ 0 and β1β2 ≥ 0, then all eigenvalues λn are nonnegative.

Proof of λ ≥ 0 - Classroom discussion!
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In the above proof we derived the following result.

Theorem 3. (Rayleigh Quotient) If
d

dx

[
s(x) dφdx

]
− q(x)φ+ λp(x)φ = 0, then

λ =

−s(x)φ(x) dφ
dx

∣∣∣r
l

+

ˆ r

l

[
s(x)(dφdx )2 + q(x)φ2(x)

]
dx

ˆ r

l
φ2(x)p(x) dx

.

Remark. If φ′(x) 6≡ 0, or φ(x) is not a constant function, then λ > 0.

To show this, we need the fact that for a continuous function f with f(x) 6≡ 0 and f(x) ≥ 0 for a ≤ x ≤ b,

then

ˆ b

a
f(x) dx > 0 . (Alternatively, we could use the fact that for a continuous nonnegative function f

with

ˆ b

a
f(x) dx = 0, then f(x) = 0 for a ≤ x ≤ b .) Classroom discussion!
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Theorem 4. For Irregular Sturm-Liouville problem (periodic boundary conditions φ(l) = φ(r) and
s(l)φ′(l) = s(r)φ′(r)), theorems 1 and 2 and the above remark hold, except for the uniqueness of the
eigenfunctions.

Example. Show that the eigenvalues λ of the problem φ′′(x) = −λφ(x), 0 < x < a
φ(0) = 0
κφ′(a) + hφ(a) = 0

are positive val-

ued, where κ > 0 and h > 0.

Classroom discussion!

Exercises: 1. Prove eigenfunctions of the problem φ′′(x) = −λφ(x), 0 < x < a
φ(0) = φ′(a) = 0

are orthogonal:

ˆ a

0
φn(x)φm(x) dx = 0 for n 6= m. (Do not just quote the S-L theorem!)

2. By use of the S-L theorem, find the exact value of the eigenvalues of the problem
u′′(x) = −λu(x), 0 < x < π
u(0) = u(π) = 0

.

Theorem 5. (Generalized Fourier Series) Let φ1, · · · , φn be eigenfunctions of the Regular Sturm-Liouville
problem with α1α2 ≥ 0 and β1β2 ≥ 0. If f(x) is a sectionally smooth function on the interval l ≤ x ≤ r,

then

∞∑
n=1

cn φn(x) = 1
2(f(x−) + f(x+)) for l < x < r where cn =

´ r
l f(x)φn(x)p(x) dx´ r
l φ

2
n(x) p(x) dx

.

Note. This theorem is in the section 2.8 of your textbook.

Exercise. Derive the formula for the constants in the last theorem. Suppose f(x) is sectionally continuous

and f(x) =
∞∑
n=1

cn φn(x), for l < x < r. Show that cn =

´ r
l f(x)φn(x)p(x) dx´ r
l φ

2
n(x) p(x) dx

. You may interchange the

order of summation and integration.
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2.9 Generalities on the Heat Conduction Problem

We want to solve the following I.V.-B.V. problem satisfied by the temperature in a nonuniform rod.

∂

∂x

(
κ(x)

∂u

∂x

)
= ρ(x)c(x)

∂u

∂t
, l < x < r, t > 0

α1u(l, t)− α2
∂u

∂x
(l, t) = c1, t > 0, α1α2 ≥ 0

β1u(r, t) + β2
∂u

∂x
(r, t) = c2, t > 0, β1β2 ≥ 0

u(x, 0) = f(x), l < x < r

The values (zero or positive) of the constants α’s and β’s correspond to fixed temperature, insulated or
convection at the ends of the rod. Classroom discussion!

If not both c1 = 0 and c2 = 0, we must find the S-S temperature distribution v(x), which is the solution
of the following.

d

dx

(
κ(x)

dv

dx

)
= 0, l < x < r

α1v(l)− α2
dv

dx
(l) = c1, α1α2 ≥ 0

β1v(r) + β2
du

dx
(r) = c2, β1β2 ≥ 0

Now, we discuss all cases except the case of both ends being insulated (α1 = β1 = 0 and c1 = c2 = 0). We
have seen that case before. In that case, λ = 0 was an eigenvalue of the S-L problem. So, we assume either
α1, β1, or both are positive. Then

v(x) =

ˆ x

l

A
κ(ξ) dξ+B whereA andB are solutions of the system


α1B − α2

A
κ(l) = c1

β1

[ˆ r

l

A
κ(ξ) dξ +B

]
+ β2

A
κ(r) = c2

.

Classroom discussion!
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For ease of notation, let κ = 1
r−l
´ r
l κ(x) dx, ρ = 1

r−l
´ r
l ρ(x) dx, and c = 1

r−l
´ r
l c(x) dx; the average values

of κ(x), ρ(x), and c(x), over the interval l ≤ x ≤ r, respectively. Define s(x) = κ(x)
κ and p(x) = ρ(x)c(x)

ρc ,

which are dimensionless, and let k = κ
ρc .

The transient temperature w(x, , t) (or u(x, t), if c1 = c2 = 0) is the solution of the following problem.

∂

∂x

(
s(x)

∂w

∂x

)
=

1

k
p(x)

∂w

∂t
, l < x < r, t > 0

α1w(l, t)− α2
∂w

∂x
(l, t) = 0, t > 0, α1α2 ≥ 0

β1w(r, t) + β2
∂w

∂x
(r, t) = 0, t > 0, β1β2 ≥ 0

w(x, 0) = f(x)− v(x), l < x < r

Classroom discussion!

Now, apply the method of separation of variables by assuming w(x, t) = φ(x)h(t). This will result in the
following ODE and Regular S-L EVP.

h′(t)

h(t)
= −λk, t > 0

d

dx

[
s(x) dφdx

]
= −λp(x)φ, l < x < r

α1φ(l)− α2φ
′(l) = 0

β1φ(r) + β2φ
′(r) = 0

Classroom discussion!
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Then h(t) = e−λkt. (We can use 1 for the constant of integration. Why?). It is easy to see that no nonzero
constant function can be a solution for φ. (Show it!) Classroom discussion!

So according to our S-L theorems we have the following.

1. There are an infinite number of positive eigenvalues; 0 < λ1 < λ2 < · · · .

2. For each eigenvalue, there is a unique (up to a constant multiple) eigenfunction, φn, n = 1, 2, · · · .

3. Eigenfunctions are orthogonal with weight function p(x):

ˆ r

l
φn(x)φm(x)p(x) dx = 0 for n 6= m.

4. If f(x) is a sectionally smooth function on the interval l ≤ x ≤ r, then

∞∑
n=1

cn φn(x) = 1
2(f(x−)+f(x+))

for l < x < r where cn =

´ r
l f(x)φn(x)p(x) dx´ r
l φ

2
n(x) p(x) dx

.

Set wn(x, t) = φn(x)e−λnkt and w(x, t) =
∞∑
n=1

cnwn(x, t) =
∞∑
n=1

cnφn(x)e−λnkt. Find constant cn so that

w(x, 0) =

∞∑
n=1

cnφn(x) = f(x)− v(x) for l < x < r.

Therefore, u(x, t) = v(x) +

∞∑
n=1

cnφn(x)e−λnkt where cn =

´ r
l (f(x)− v(x))φn(x)p(x) dx´ r

l φ
2
n(x) p(x) dx

and k, p(x) and

v(x) as stated before.
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Remarks: 1. If f(x) is sectionally smooth, then u(x, 0) = 1
2(f(x−) + f(x+)), while if f(x) is also

continuous, then u(x, 0) = f(x).

2. lim
t→∞

u(x, t) = v(x). For any fixed value t1, the series
∞∑
n=1

cnφn(x)e−λnkt1 converges uniformly, thus the

solution u(x, t1) is a continuous function (in x) even though the initial condition f(x) might not have been
a continuous function.

Exercise. Show that for the above solution lim
t→∞

u(x, t) = v(x). Hints: You may interchange the order of

the limit and summation. Assume cn’s are bounded.



Chapter 3

The Wave Equation

3.1 The Vibrating String

We want to obtain the equation governing the motion of a flexible, taut string of finite length and with
fixed endpoints after being put into motion by an initial force.

We will make the following assumptions.

1. The string is uniform: uniform cross section, uniform density, ... .

2. The motion takes place entirely in one plane, and in that plane each particle moves at right angle to
the equilibrium position of the string. Classroom discussion!

3. The string is perfectly flexible, that is; the tension at any point on the string is tangent to midline
of the string at that point

We will make use of the following.

1. Newton’s First Law of Motion - Some of forces on a particle in equilibrium is zero.

2. Newton’s Second Law of Motion - F = ma .

Notation- L = length: cm, ft, ...; t = time: second, ...; m = Mass: gram, slug, ...; ρ = Linear Density =
mass

length
:

gram
cm ,

kg
m ,

slug
ft

Consider a portion of the string which lies between x and x+ ∆x. The portions of the string to the right
and left of our element exert forces on it which causes acceleration. Let u(x, t) be the displacement of the
string, at point x and time t, from the equilibrium; cm, ft, ... .

PUT GRAPHS HERE

Let T (x) and T (x+ ∆x) be the tensions at the end x and x+ ∆x, respectively; dyn =
gram cm
sec2

, N = kgm
sec2

,
lb, ... . Since our string only moves vertically, then the sum of forces in the horizontal direction must be
zero (Newton’s 1st Law of Motion). Hence

−T (x) cosα+ T (x+ ∆x) cosβ = 0,
gram cm
sec2

, =⇒
T (x) cosα = T (x+ ∆x) cosβ

Since this will hold for every x and ∆x, then we can assume each side of the above is the same constant.

T (x) cosα = T (x+ ∆x) cosβ = T constant =⇒
T (x) = T

cosα , T (x+ ∆x) = T
cosβ

61
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Using Newton’s 2nd Law of Motion in the vertical direction we get the following.

−T (x) sinα+ T (x+ ∆x) sinβ −mg︸ ︷︷ ︸
F

= m
∂2u

∂t2
(x, t)︸ ︷︷ ︸

ma

,
gram cm
sec2

Divide both sides by cosα, use m = ρ∆x and the above identities to get

−T tanα+ T tanβ − ρ∆x g = ρ∆x ∂2u
∂t2

(x, t).

Now, tanα and tanβ are the slopes of the strings at x and x+ ∆x, respectively; that is, tanα = ∂u
∂x(x, t)

and tanβ = ∂u
∂x(x+ ∆x, t). Using these and dividing both sides by ∆x we get the following.

T
∂u
∂x(x+ ∆x, t)− ∂u

∂x(x, t)

∆x
= ρ∆x

(
∂2u

∂t2
(x, t) + g

)
Taking the limit of both sides as ∆x→ 0 we get

∂2u

∂x2
=

1

c2

∂2u

∂t2
+

1

c2
g, where c2 = T

ρ .

Assuming c2 is very large in comparison to g, then we can neglect the term 1
c2
g. This gives the equation

of the vibrating string, wave equation, in one-dimension,

∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0.

Classroom discussion!

For the vibrating string we have described here, the boundary conditions are zero displacement at the
ends; u(0, t) = u(a, t) = 0. But to describe the motion of the string we must also specify the initial
position, u(x, 0), and the initial velocity, ∂u∂t (x, 0). Therefore, the BV-IV problem for the string under our
assumptions is the following.

∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0

u(0, t) = u(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a
∂u

∂t
(x, 0) = g(x), 0 < x < a

3.2 Solution of the Vibrating String Problem

We want to solve
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∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0

u(0, t) = u(a, t) = 0, t > 0 (Fixed Ends)

u(x, 0) = f(x), 0 < x < a (Initial Position)
∂u

∂t
(x, 0) = g(x), 0 < x < a (Initial Velocity).

Since the PDE and the boundary conditions are linear and homogeneous, we can apply the method of
separation of variables.

Assume u(x, t) = φ(x)h(t). Plug into PDE and boundary conditions. Using −λ as the constant of sep-
aration we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of λ. Classroom discussion!

φ′′(x) = −λφ(x), 0 < x < a

X(0) = X(a) = 0

h′′(t) + λc2h(t) = 0, t > 0

It is easy to see that no nonzero constant function can be a solution for X. (Show it!) Therefore,
by the S-L theorem, λ > 0. Let λ = µ2 with µ > 0. The solution of the above EVP is µ = nπ

a ,
φ(x) = sinµa = sin nπx

a for n = 1, 2, · · · . And the corresponding solutions of the ODE are h(t) =
a cosµct+ b sinµct = a cos nπcta + b sin nπct

a . Classroom discussion!
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Let µn = nπ
a , φn(x) = sin nπx

a , hn(t) = an cos nπcta + bn sin nπct
a and un(x, t) = φn(x)hn(t) = (an cos nπcta +

bn sin nπct
a ) sin nπx

a .

By the superposition principle

u(x, t) =
∞∑
n=1

cnun(x, t) =
∞∑
n=1

(an cos nπcta + bn sin nπct
a ) sin nπx

a

where we have written ancn and bncn as an and bn again, respectively.

Now, use the initial conditions to find the constants an and bn.

u(x, 0) =

∞∑
n=1

an sin nπx
a = f(x), 0 < x < a

By the uniqueness of the F. series, assuming f(x) is sectionally continuous, an =
2

a

ˆ a

0
f(x) sin nπx

a dx.

Now, assuming we can differentiate the series with respect to t term-by-term, we get

∂u

∂t
(x, t) =

∞∑
n=1

(−an nπca sin nπct
a + bn

nπc
a cos nπcta ) sin nπx

a and

∂u

∂t
(x, 0) =

∞∑
n=1

bn
nπc
a sin nπx

a = g(x), 0 < x < a

Again, by the uniqueness of the F. series, assuming g(x) is sectionally continuous, bn =
2

nπc

ˆ a

0
g(x) sin nπx

a dx.

Thus

u(x, t) =
∞∑
n=1

(an cos nπcta + bn sin nπct
a ) sin nπx

a with

an =
2

a

ˆ a

0
f(x) sin nπx

a dx and bn =
2

nπc

ˆ a

0
g(x) sin nπx

a dx.

Of course, if the problem asks for it, we will do the step of mathematical justification.

Exercise. Show that u(x, t) =

∞∑
n=1

an cos nπcta sin nπx
a satisfies
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∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0

u(0, t) = u(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a
∂u

∂t
(x, 0) = 0, 0 < x < a

where an’s are F. sine series coefficients of continuous and sectionally smooth, odd 2a-periodic extension
of f .

Now, let’s consider the following specific example:

f(x) =

{
2x
a , 0 ≤ x < a

2
2− 2x

a ,
a
2 ≤ x < a

g(x) = 0, 0 < x < a.

PUT THE GRAPH HERE

That is, the string is lifted up one unit in the middle and then released.

Since g(x) = 0, we have bn = 0 for n = 1, 2, · · · . Earlier we found that the F. sine series of f is

fo(x) = 8
π2

∞∑
n=1

sin nπ
2

n2 sin nπx
a , the equality is due to the convergence theorem. Therefore, an = 8

π2

sin nπ
2

n2 for

n = 1, 2, · · · . So,

u(x, t) = 8
π2

∞∑
n=1

sin nπ
2

n2 sin nπx
a cos nπcta .

Using the identity sin a cos b = 1
2(sin(a+ b) + sin(a− b)), we get

u(x, t) = 1
2

∞∑
n=1

[
8
π2

sin nπ
2

n2 sin nπ(x−ct)
a + 8

π2

sin nπ
2

n2 sin nπ(x+ct)
a

]
= 1

2

[
fo(x− ct) + fo(x+ ct)

]
.

Now, we can easily graph u(x, t) at different times.

PUT THE GRAPHS HERE

3.3 D’Alembert’s Solution

There is another simple way to solve the wave equation ∂2u
∂x2

= 1
c2
∂2u
∂t2

. We start by making a change of
variables. Let w = x+ ct and z = x− ct. Think of u as a function of w and z. Rewrite the wave equation
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in terms of independent variables w and z. Using the chain rule we can show that

∂u

∂x
=
∂u

∂w
+
∂u

∂z
∂u

∂t
= c

∂u

∂w
+ c

∂u

∂z
∂2u

∂x2
=
∂2u

∂w2
+ 2

∂2w

∂w∂z
+
∂2u

∂z2

∂2u

∂t2
= c2 ∂

2u

∂w2
− 2c2 ∂2w

∂w∂z
+ c2∂

2u

∂z2

Classroom discussion!

Therefore,

∂2u

∂x2
=

1

c2

∂2u

∂t2
=⇒ · · · =⇒ ∂2u

∂w∂z
= 0.

Now,

∂2u

∂w∂z
= 0 =⇒ · · · =⇒ u(x, t) = φ(x+ ct) + ψ(x− ct)

where φ and ψ are arbitrary twice differentiable functions. Classroom discussion!
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This solution, u(x, t) = φ(x + ct) + ψ(x − ct) where φ and ψ are arbitrary twice differentiable functions,
of the wave equation is called the d’Alembert’s solution.

Exercise. Suppose φ and ψ are twice differentiable functions. Show that u(x, t) = φ(x + ct) + ψ(x − ct)
satisfies the wave equation ∂2u

∂x2
= 1

c2
∂2u
∂t2

.

Now, let’s solve the problem we solved earlier by using F. series by the d’Alembert’s method.

∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0

u(0, t) = u(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a
∂u

∂t
(x, 0) = g(x), 0 < x < a

We look for a solution of the form u(x, t) = φ(x+ ct) +ψ(x− ct). This function already satisfies the PDE.
Now, we must find functions φ and ψ so that u satisfies the initial and boundary conditions. First, we will
apply the initial conditions. Notice that ∂u

∂t (x, t) = c φ′(x+ ct)− c ψ′(x− ct).

u(x, 0) = f(x) =⇒ φ(x) + ψ(x) = f(x), 0 < x < a
∂u

∂t
(x, 0) = g(x) =⇒ c φ′(x)− c ψ′(x) = g(x), 0 < x < a

The solution of this system is

φ(x) = 1
2(f(x) +G(x) + k) and

ψ(x) = 1
2(f(x)−G(x)− k), for 0 < x < a, where G(x) = 1

c

ˆ x

0
g(ξ) dξ and k is a constant.

Classroom discussion!
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Notice that these formulas give φ and ψ only on the interval (0, a), and so we can not use them in
u(x, t) = φ(x + ct) + ψ(x − ct) since the arguments x ± ct will not be in (0, a) for large time t values.
To overcome this problem, we will extend f and g to the entire real number line; call these new functions
f̃ and g̃, respectively. So, φ(x) = 1

2(f̃(x) + G̃(x) + k) and φ(x) = 1
2(f̃(x) − G̃(x) − k). Now, apply the

boundary conditions to figure out what type of extensions is appropriate.

u(0, t) = 0 =⇒
[
f̃(ct) + f̃(−ct)

]
+
[
G̃(ct)− G̃(−ct)

]
= 0

u(a, t) = 0 =⇒
[
f̃(a+ ct) + f̃(a− ct)

]
+
[
G̃(a+ ct)− G̃(a− ct)

]
= 0

Classroom discussion!

Since functions f and g (or G) are independent of one another, these conditions hold only if

f̃(ct) + f̃(−ct) = 0

f̃(a+ ct) + f̃(a− ct) = 0
and

G̃(ct)− G̃(−ct) = 0

G̃(a+ ct)− G̃(a− ct) = 0
.

The condition f̃(ct)+f̃(−ct) = 0 holds if f̃ is an odd function, while the condition G̃(ct)−G̃(−ct) = 0 holds
if G̃ is an even function. The remaining two conditions f̃(a+ct)+f̃(a−ct) = 0 and G̃(a+ct)−G̃(a−ct) = 0
will also hold if both f̃ and G̃ are 2a-periodic functions. Classroom discussion!

Therefore, f̃(x) = fo(x) and G̃(x) = Ge(x). Hence, φ(x) = 1
2(fo(x) + Ge(x) + k), and ψ(x) = 1

2(fo(x) −
Ge(x)− k), for −∞ < x <∞. Finally,

u(x, t) = 1
2

[
fo(x+ ct) + fo(x− ct)

]
+ 1

2

[
Ge(x+ ct) +Ge(x− ct)

]
where G(x) = 1

c

ˆ x

0
g(ξ) dξ.

Question. What extension of g results in G(x) = 1
c

ˆ x

0
g(ξ) dξ being an even 2a-periodic function?

The answer to the above question, is in the following exercises.

Exercises: 1. Show that if g(x) is an even (or odd) function, then G(x) =
´ x

0 g(ξ) dξ is an odd (or even)
function.
2. Show that if g(x) is an odd 2a-periodic function, then

´ x+2a
x g(ξ) dξ = 0. Hint: Use the earlier result

that
´ c+p
c f(x) dx =

´ p
0 f(x) dx, for any p-periodic function f , twice; once for c = x and then for c = −a.

3. Show that if g(x) is an odd (or even) 2a-periodic function, then G(x) =
´ x

0 g(ξ) dξ is an even (or odd)
2a-periodic function.
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Now, we can write the above d’Alembert’s solution in the following more informative way.

Exercise. Show that the above solution can be written as

u(x, t) =
1

2

[
fo(x+ ct) + fo(x− ct)

]
+

1

2c

ˆ x+ct

x−ct
go(ξ) dξ.

Remarks: 1. Notice that the solution at the point (x, t) depends on the initial conditions in the interval
[x− ct, x+ ct]. This interval is called the domain of dependence. PUT THE GRAPH HERE.

2. Said another way, the initial condition at (x, 0) influences the solution in the region between the lines
y = x− ct and y = x+ ct. This region is called the region of influence. PUT THE GRAPH HERE.

To complete the relationships between a function and its extension, do the following exercise.

Exercise. Show that if differentiable function f(x) is an odd (or even), 2a-periodic function, then f ′(x)
is an even (or odd), 2a-periodic function. Hint: Start with f(−x) = f(x) or f(−x) = −f(x), and
f(x+ 2a) = f(x). Differentiate both sides.

The above result will be useful in the following exercise.

Exercise. Solve
∂2u

∂x2
=

1

c2

∂2u

∂t2
, 0 < x < a, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(a, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < a

∂u

∂t
(x, 0) = 0, 0 < x < a

by the d’Almebert’s method.

3.4 Generalities on the One-Dimensional Wave Equation

We want to solve the following I.V.-B.V. problem satisfied by the motion of a nonuniform string.

∂

∂x

(
s(x)

∂u

∂x

)
=
p(x)

c2

∂2u

∂t2
, l < x < r, t > 0

α1u(l, t)− α2
∂u

∂x
(l, t) = c1, t > 0, α1α2 ≥ 0

β1u(r, t) + β2
∂u

∂x
(r, t) = c2, t > 0, β1β2 ≥ 0

u(x, 0) = f(x), l < x < r

∂u

∂t
(x, 0) = g(x), l < x < r



CHAPTER 3. THE WAVE EQUATION 70

where s(x), s′(x) and p(x) are continuous and both s(x) and p(x) are positive on l ≤ x ≤ r.

Suppose the string ends are attached to a spring-mass system and allowed to move only vertically in a
slot. Let kl and kr be the spring constants at the ends x = l and x = r, respectively. Let Tl and Tr be the
tensions in the string at the end x = l and x = r, respectively. PUT THE GRAPH HERE.

Then, the boundary condition at the end x = l is −klu(l, t) + Tl
∂u
∂x(l, t) = m∂2u

∂t2
(l, t) while the bound-

ary condition at the end x = r is kru(r, t) + Tr
∂u
∂x(r, t) = m∂2u

∂t2
(l, t). If the mass is small, then

klu(l, t)− Tl ∂u∂x(l, t) = 0 and kru(r, t)− Tr ∂u∂x(r, t) = 0. And if no spring is used (the ends move freely up

or down in the vertical slots, without friction), then ∂u
∂x(l, t) = 0 and ∂u

∂x(l, t) = 0. This is called the free
end boundary condition. The boundary conditions listed in our problem are the most general conditions.
Classroom discussion!

Now, we discuss all cases except the case α1 = β1 = 0. If not both c1 = 0 and c2 = 0, we look for a solution
of the form u(x, t) = v(x) + w(x, t). However, neither of the names“steady state solution” nor “transient
solution” is appropriate. Here, v(x) represents the equilibrium solution and is the solution of the following.

d

dx

(
s(x)

dv

dx

)
= 0, l < x < r

α1v(l)− α2
dv

dx
(l) = c1, α1α2 ≥ 0

β1v(r) + β2
dv

dx
(r) = c2, β1β2 ≥ 0

We can solve this as we did for the heat equation.

v(x) =

ˆ x

l

A
s(ξ) dξ+B whereA andB are solutions of the system


α1B − α2

A
s(l) = c1

β1

[ˆ r

l

A
s(ξ) dξ +B

]
+ β2

A
s(r) = c2

.

The function w(x, t) (or u(x, t), if c1 = c2 = 0) is the solution of the following problem.
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∂

∂x

(
s(x)

∂w

∂x

)
=
p(x)

c2

∂w

∂t
, l < x < r, t > 0

α1w(l, t)− α2
∂w

∂x
(l, t) = 0, t > 0, α1α2 ≥ 0

β1w(r, t) + β2
∂w

∂x
(r, t) = 0, t > 0, β1β2 ≥ 0

w(x, 0) = f(x)− v(x), l < x < r

∂w

∂t
(x, 0) = g(x), l < x < r

Classroom discussion!

Now, apply the method of separation of variables by assuming w(x, t) = φ(x)h(t). This will result in the
following ODE and Regular S-L EVP.

d

dx

[
s(x) dXdx

]
= −λp(x)X, l < x < r

α1X(l)− α2X
′(l) = 0

β1X(r) + β2X
′(r) = 0

h′′(t) + λc2h(t) = 0, t > 0

Classroom discussion!

Since we have assumed either α1, β1, or both are positive, it is easy to see that no nonzero constant
function can be a solution for X. (Show it!) In the case α1 = β1 = 0, λ = 0 will be an eigenvalue of the
S-L problem. Classroom discussion!

So, according to S-L theorems we have the following.

1. There are an infinite number of positive eigenvalues: 0 < λ1 < λ2 < · · · .

2. For each eigenvalue, there is a unique (up to a constant multiple) eigenfunction, φn, n = 1, 2, · · · .

3. Eigenfunctions are orthogonal with weight function p(x):

ˆ r

l
φn(x)φm(x)p(x) dx = 0 for n 6= m.

4. If f(x) is a sectionally smooth function on the interval l ≤ x ≤ r, then

∞∑
n=1

cn φn(x) = 1
2(f(x−)+f(x+))
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for l < x < r where cn =

´ r
l f(x)φn(x)p(x) dx´ r
l φ

2
n(x) p(x) dx

.

Since λ > 0, the solution of the ODE is h(t) = a cos
√
λct+ b sin

√
λct. For n = 1, 2, · · · , set λn = µ2

n with
µn > 0, φn(x) = φn(x), hn(t) = an cosµnct + bn sinµnct, and wn(x, t) = (an cosµnct + bn sinµnct)φn(x),

then w(x, t) =
∞∑
n=1

(an cosµnct + bn sinµnct)φn(x). Assuming we can differentiate the series with respect

to t term-by-term, we have ∂w
∂t (x, t) =

∞∑
n=1

(−anµnc sinµnct+ bnµnc cosµnct)φn(x). Find constant an and

bn so that initial conditions are satisfied. Classroom discussion!

w(x, 0) =

∞∑
n=1

anφn(x) = f(x)− v(x), l < x < r

∂w

∂t
(x, 0) =

∞∑
n=1

bnµncφn(x) = g(x), l < x < r

So,

an =

ˆ r

l
(f(x)− v(x))φn(x)p(x) dx
ˆ r

l
φ2
n(x) p(x) dx

and bn = 1
µnc

ˆ r

l
g(x)φn(x)p(x) dx
ˆ r

l
φ2
n(x) p(x) dx

.

Hence,

u(x, t) =

ˆ x

l

A
s(ξ) dξ +B +

∞∑
n=1

(an cosµnct+ bn sinµnct)φn(x)

where A, B, an and bn are as stated before.

Remarks: 1. The mathematical justification step still remains and we will not do them here!
2. lim

t→∞
u(x, t) does not exist.

3. There is no simple relationship between µn’s. (In the case of the uniform string with fixed ends, we
had µn = nµ1.)
4. u(x, t) is not periodic in time.



Chapter 4

The Potential Equation

4.1 Potential (Laplace) Equation

Definitions: 1. ∆u = ∇2u = 0 is called the potential or Laplace’s equation.

∆u can be read as delta u or Laplacian of u. ∇2u is read as nabla-squared u or del-squared u. Nabla is the
name for an ancient harp in middle east and is used more recently for ∇, due to its shape. Traditionally,
the symbol ∇ was called del.

In one dimension, ∆u = ∇2u =
d2u

dx2

In two dimensions, ∆u = ∇2u =
∂2u

∂x2
+
∂2u

∂y2

In n dimensions, ∆u = ∇2u =

n∑
i=1

∂2u

∂x2
i

2. Solutions of the potential equation are called harmonic functions.

We can think of Laplace’s equation as the time-independent (equilibrium) part of the heat or wave equa-
tion. Many physical phenomena are described by this equation.

Suppose ∇2u = 0 in some region Ω (a line segment, a rectangle, etc.). We usually have one of the following
three types of boundary conditions.

1. The value of u on the boundary of Ω, ∂Ω, is specified; u|∂Ω = f(x).

2. The value of directional derivative of u along the outward pointing unit normal n̂ on the boundary
is given; ∂u

∂n |∂Ω = f(x). Recall that ∂u
∂n = ∇u · n̂.

3.
(
αu+ β ∂u∂n

)
|∂Ω = f(x).

The boundary value problem consisting of the potential equation and

I. the B.C. 1 is called the Dirichlet’s problem.

II. the B.C. 2 is called the Neumann’s problem.

III. the B.C. 3 is called the Robin’s problem.

Theorem 1. (Maximum Principle) Suppose ∇2u = 0 on some open (does not contain its boundary),
connected (one piece), bounded (contained in a box of finite dimensions) set Ω, or equivalently, ∇2u = 0
on some bounded domain Ω. Then, if u is not constant, it must contain its maximum or minimum value
on the boundary of Ω.

73
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Example. Suppose u(x, y) is a function defined on the open rectangle R and its boundary with u|∂R = 1,
while at some point in R, the funcion value of u is 2. Then, by the Maximum Principle, we can not have
∇2u = 0 in R. That is, u is not a harmonic function. PUT THE GRAPH HERE.

Theorem 2. Suppose Ω is as in the Maximum Principle theorem and

∇2u = 0, in Ω
u = 0, on ∂Ω

.

Then u = 0 in Ω.

Exercise. Prove the last theorem using the Maximum Principle.

Theorem 3. Suppose Ω is as in the Maximum Principle theorem. Then the solution of the Dirichlet’s
problem

∇2u = f, in Ω
u = g, on ∂Ω

is unique.

Exercise. Using Theorem 2, prove the Theorem 3.

Remark. Solution of the Neumann’s problem is not unique, since if u is a solution, then u + c is also a
solution, where c is any constant. Show it!

Now, consider the potential equation in two dimensions. We can write ∇2u in polar coordinates, as follows.

x = r cos θ
y = r sin θ
r =

√
x2 + y2

θ =

{
tan−1 y

x , x > 0
π + tan−1 y

x , x < 0

−π
2 < θ < 3π

2 and θ 6= π
2 , r > 0

PUT GRAPH HERE

If x = 0 and y 6= 0, then r = |y| and θ = (sign of y)π2 . If x = y = 0, then r = 0 and θ is arbitrary.

Using the chain rule we will find the partial derivatives of r and θ with respect to each of the variables x
and y and use them to find the first and second partial derivatives of u with respect to the variables x and y.

∂r
∂x = 1

2(x2 + y2)−
1
2 2x = · · · = cos θ. Similarly, ∂r

∂y = sin θ. ∂θ
∂x =

− y

x2

1+ y2

x2

= · · · = − sin θ
r . Similarly,∂θ∂y = cos θ

r .

Classroom discussion!
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∂u
∂x = ∂u

∂r
∂x
∂x + ∂u

∂θ
∂θ
∂x = cos θ ∂u∂r −

sin θ
r

∂u
∂θ

∂2u
∂x2

= ∂
∂x(∂u∂x) = ∂

∂r (∂u∂x) ∂r∂x + ∂
∂θ (∂u∂x) ∂θ∂x = · · · = cos2 θ ∂

2u
∂r2
− 2 sin θ cos θ

r
∂2u
∂r∂θ + sin2 θ

r2
∂2u
∂θ2

+ sin2 θ
r

∂u
∂r + 2 sin θ cos θ

r2
∂u
∂θ

Similarly, ∂2u
∂y2

= sin2 θ ∂
2u
∂r2

+ 2 sin θ cos θ
r

∂2u
∂r∂θ + cos2 θ

r2
∂2u
∂θ2

+ cos2 θ
r

∂u
∂r − 2 sin θ cos θ

r2
∂u
∂θ . Classroom discussion!

After substituting in ∇2u = ∂2u
∂x2

+ ∂2u
∂y2

and simplifying, we will get

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

Classroom discussion!

4.2 Potential in a Rectangle

We want to solve the Dirichelt’s problem in a rectangle. PUT THE GRAPH HERE.

∇2u = 0, 0 < x < a, 0 < y < b

u(x, 0) = f1(x), u(x, b) = f2(x), 0 < x < a

u(0, y) = u(a, y) = 0, 0 < y < b
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Since the PDE and two of the boundary conditions (on parallel sides) are linear and homogeneous, we can
apply the method of separation of variables.

Assume u(x, y) = X(x)Y (y). Plug into PDE and boundary conditions. Using −λ as the constant of
separation we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of λ. Classroom discussion!

X ′′(x) = −λX(x), 0 < x < a

X(0) = X(a) = 0

Y ′′(y)− λY (y) = 0, 0 < y < b

It is easy to see that no nonzero constant function can be a solution for X. (Show it!) Therefore,
by the S-L theorem, λ > 0. Let λ = µ2 with µ > 0. The solution of the above EVP is µ = nπ

a ,
X(x) = sinµa = sin nπx

a for n = 1, 2, · · · . And the corresponding solutions of the ODE are Y (y) =

Aeµy +B e−µy = Ae
nπy
a +B e−

nπy
a . Classroom discussion!

At this stage it would be helpful to use the identity

Aez +B e−z = (A+B) e
z+e−z

2 + (A−B) e
z−e−z

2 = (A+B) cosh z + (A−B) sinh z
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and using A and B, again, in place of A+B and A−B, we can write Y (y) = A cosh nπy
a +B sinh nπy

a .

Remark. Another way of obtaining the solution of Y is to notice that y1 = coshµy and y2 = sinhµy are
two solutions of the ODE (Show it!) and they are also independent (W (y1, y2) = y1y

′
2 − y2y

′
1 = · · · 6= 0),

hence Y (y) = A, coshµy +B sinhµy.

For n = 1, 2, · · · , let µn = nπ
a , Xn(x) = sin nπx

a , Yn(t) = An cosh nπy
a + Bn sinh nπy

a and un(x, y) =
Xn(x)Yn(y) = (An cosh nπy

a +Bn sinh nπy
a ) sin nπx

a .

By the superposition principle

u(x, y) =
∞∑
n=1

dnun(x, t) =
∞∑
n=1

(an cosh nπy
a + cn sinh nπy

a ) sin nπx
a

where we have written dnAn and dnBn as an and cn, respectively.

Now, use the remaining two boundary conditions to find the constants an and cn.

u(x, 0) =

∞∑
n=1

an sin nπx
a = f1(x), 0 < x < a

By the uniqueness of the F. series, assuming f1 is sectionally continuous, an =
2

a

ˆ a

0
f1(x) sin nπx

a dx.

u(x, b) =
∞∑
n=1

(an cosh nπb
a + cn sinh nπb

a ) sin nπx
a = f2(x), 0 < x < a

By the uniqueness of the F. series, assuming f2 is sectionally continuous, cn = 1
sinh nπb

a

bn−
cosh nπb

a

sinh nπb
a

an where

bn =
2

a

ˆ a

0
f2(x) sin nπx

a dx.

Thus,

u(x, y) =
∞∑
n=1

[
bn

sinh nπb
a

sinh nπy
a + an

(
cosh nπy

a −
cosh nπb

a

sinh nπb
a

sinh nπy
a

)]
sin nπx

a .

Using a hyperbolic function identity, cosh nπy
a −

cosh nπb
a

sinh nπb
a

sinh nπy
a =

sinh nπ
a

(b−y)

sinh nπb
a

.

See Review, Identities, Formulas and Theorems.

Finally,

u(x, y) =
∞∑
n=1

[
an

sinh nπb
a

sinh nπ
a (b− y) + bn

sinh nπb
a

sinh nπy
a

]
sin nπx

a , where

an =
2

a

ˆ a

0
f1(x) sin nπx

a dx and bn =
2

a

ˆ a

0
f2(x) sin nπx

a dx.

Of course, if the problem asks for it, we will do the step of mathematical justification.

Remark. For solving Y ′′ = µ2Y , we could have noticed that y1 = sinhµy and y2 = sinhµ(b− y) are two
independent solutions of it (Show it!) and, immediately, written Y (y) = a sinhµy+ c sinhµ(b− y). This is
the most convenient form of the solution Y since when we plug in y = 0 and y = b, one term of it is zero,
making the calculation of the constants easier.
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Now consider the following more general problem. PUT THE GRAPH HERE.

∇2u = 0, 0 < x < a, 0 < y < b

u(x, 0) = f1(x), u(x, b) = f2(x), 0 < x < a

u(0, y) = g1(y), u(a, y) = g2(y), 0 < y < b

Since we do not have homogeneous boundary conditions on two parallel sides, we break this problem into
two such problems.

∇2u1 = 0, 0 < x < a, 0 < y < b

u1(x, 0) = f1(x), 0 < x < a

u1(x, b) = f2(x), 0 < x < a

u1(0, y) = 0, 0 < y < b

u1(a, y) = 0, 0 < y < b

∇2u2 = 0, 0 < x < a, 0 < y < b

u2(x, 0) = 0, 0 < x < a

u2(x, b) = 0, 0 < x < a

u2(0, y) = g1(y), 0 < y < b

u2(a, y) = g2(y), 0 < y < b

Since the PDE and all boundary conditions are linear, it is easy to see that if u1 and u2 are solutions of
these problems, then u = u1 + u2 is a solution of the original problem. (Show it!). We have already solved
for u1 and the solution for u2 will be similar.

u2(x, y) =
∞∑
n=1

[
An

sinh nπa
b

sinh nπ
b (a− x) + Bn

sinh nπa
b

sinh nπx
b

]
sin nπy

b , where

An =
2

b

ˆ b

0
g1(y) sin nπy

b dy and Bn =
2

b

ˆ b

0
g2(x) sin nπy

b dy.

Remark. Think about types of problems (PDE, boundary or initial conditions, and domain) we can apply
the method of the separation of variables.

4.3 Further Examples for a Rectangle

We want to solve the following potential equation in a rectangle with mixed boundary conditions.

∇2u = 0, 0 < x < a, 0 < y < b

u(x, 0) = f1(x), u(x, b) = f2(x), 0 < x < a

∂u

∂x
(0, y) =

∂u

∂x
(a, y) = 0, 0 < y < b

Since the PDE and two of the boundary conditions (on parallel sides) are linear and homogeneous, we can
apply the method of separation of variables.

Assume u(x, y) = X(x)Y (y). Plug into PDE and boundary conditions. Using −λ as the constant of
separation we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of λ. Classroom discussion!
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X ′′(x) = −λX(x), 0 < x < a

X ′(0) = X ′(a) = 0

Y ′′(y)− λY (y) = 0, 0 < y < b

By the S-L theorem, λ ≥ 0. If λ = 0, then the solution of X ′′(x) = 0, X ′(0) = X ′(a) = 0, is
X(x) = 1 and the solution of Y ′′(y) = 0 is y(y) = A + By. Set X0(x) = 1 and Y0(y) = A0 + B0 y,
then u0(x, y) = X0(y)Y0(y) = A0 +B0 y. Classroom discussion!

For all other cases, λ > 0. Let λ = µ2 with µ > 0. The solution of the above EVP is µ = nπ
a , X(x) = cosµx

where n = 1, 2, · · · . And the corresponding solutions of the ODE are Y (y) = A sinhµy +B sinhµ(b− y).
Classroom discussion!

For n = 1, 2, · · · , let µn = nπ
a , Xn(x) = cosµnx and Yn(y) = An sinhµny + Bn sinhµn(b − y), then
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un(x, y) = Xn(y)Yn(y) = (An sinh nπy
a +Bn sinh nπ

a (b− y)) cos nπxa .

Remarks: 1. Since we will form a linear combination of all solutions u(x, y) = X(x)Y (y), that is, multiply
each by a constant and add them, we used one “1” for the constant in the solution of X(x).
2. We chose to write Yn(y) = An sinhµny + Bn sinhµn(b − y) in order to make future calculations for
constants a bit easier; at y = 0 and y = b, one of the terms is zero.

By the superposition principle,

u(x, y) = c0u0(x, y) +

∞∑
n=1

cnun(x, y) = c0 + d0 y +

∞∑
n=1

(cn sinh nπy
a + dn sinh nπ

a (b− y)) cos nπxa

where we have used cn and dn in place of cnAn and cnBn, respectively, for n = 0, 1, · · · .

Now, use the remaining two boundary conditions to find the constants cn and dn.

u(x, 0) = c0 +
∞∑
n=1

dn sinh nπb
a cos nπxa = f1(x), 0 < x < a

By the uniqueness of the F. series, assuming f1 is sectionally continuous,

c0 =
1

a

ˆ a

0
f1(x) dx and dn =

2

a sinh nπb
a

ˆ a

0
f1(x) cos nπxa dx.

u(x, b) = c0 + bd0 +
∞∑
n=1

cn sinh nπb
a cos nπxa = f2(x), 0 < x < a

By the uniqueness of the F. series, assuming f1 is sectionally continuous,

d0 =
1

ab

ˆ a

0
(f2(x)− c0) dx and cn =

2

a sinh nπb
a

ˆ a

0
(f2(x)− c0) cos nπxa dx.

Classroom discussion!

Now, solve the following potential equation in a rectangle with another type of mixed boundary conditions.
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∇2u = 0, 0 < x < a, 0 < y < b

∂u

∂y
(x, 0) = f(x), 0 < x < a

u(x, b) = 0, 0 < x < a

∂u

∂x
(0, y) = 0, 0 < y < b

u(a, y) = g(y), 0 < y < b

Since we do not have homogeneous boundary conditions on two parallel sides, we break this problem into
two such problems.

∇2u1 = 0, 0 < x < a, 0 < y < b

∂u1

∂y
(x, 0) = 0, 0 < x < a

u1(x, b) = 0, 0 < x < a

∂u1

∂x
(0, y) = 0, 0 < y < b

u1(a, y) = g(y), 0 < y < b

∇2u2 = 0, 0 < x < a, 0 < y < b

∂u2

∂y
(x, 0) = f(x), 0 < x < a

u2(x, b) = 0, 0 < x < a

∂u2

∂x
(0, y) = 0, 0 < y < b

u2(a, y) = 0, 0 < y < b

Since the PDE and all boundary conditions are linear, it is easy to see that if u1 and u2 are solutions of
these problems, then u = u1 + u2 is a solution of the original problem. (Show it!).

First, solve for u1. Assume u1(x, y) = X(x)Y (y). Plug into PDE and boundary conditions to get the
following S-L EVP and ODE with one boundary condition. Classroom discussion!

Y ′′(y) = −λY (y), 0 < y < b

Y ′(0) = Y (b) = 0

X ′′(x)− λX(x) = 0, 0 < x < a

X ′(0) = 0

It is easy to see that no nonzero constant function can be a solution for Y . (Show it!) Therefore, by the

S-L theorem, λ > 0. Let λ = µ2 with µ > 0. The solution of the above EVP is µ = (2n−1)π
2b , Y (y) = c cosµy

where n = 1, 2, · · · . And the corresponding solutions of the ODE with one B. C. are X(x) = d coshµx.
Classroom discussion!
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For n = 1, 2, · · · , let µn = (2n−1)π
2b , Xn(x) = coshµnx and Yn(y) = cosµny, then un(x, y) = Xn(y)Yn(y) =

cosh (2n−1)πx
2b cos (2n−1)πy

2b .

Remarks: 1. Since we will form a linear combination of all solutions u(x, y) = X(x)Y (y), that is, multiply
each by a constant and add them, we used one “1” for the constants in the solutions.
2. We chose to write X(x) = c sinhµx+ d coshµx in order to make future calculations a bit easier.

By the superposition principle,

u1(x, y) =
∞∑
n=1

anun(x, y) =
∞∑
n=1

an cosh (2n−1)πx
2b cos (2n−1)πy

2b

Now, use the remaining boundary condition to find the constants an.

u1(a, y) =
∞∑
n=1

an cosh (2n−1)πa
2b cos (2n−1)πy

2b = g(y), 0 < y < b

By the uniqueness of the F. series, assuming g is sectionally continuous,

an =
2

b cosh (2n−1)πa
2b

ˆ b

0
g(y) cos (2n−1)πy

2b dy.

We will solve for u2 in a similar fashion. Assume u2(x, y) = X(x)Y (y). Plug into PDE and boundary
conditions to get the following S-L EVP and ODE with one boundary condition. Classroom discussion!
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X ′′(x) = −λX(x), 0 < x < a

X ′(0) = X(a) = 0

Y ′′(y)− λY (y) = 0, 0 < y < b

Y ′(0) = 0

It is easy to see that no nonzero constant function can be a solution for X, therefore, by the S-L theorem,
λ > 0. Let λ = ν2 with ν > 0. Then ν = (2n−1)π

2a , X(x) = c cos νx and Y (y) = d sinh ν(b − y) for
n = 1, 2, · · · . Classroom discussion!

For n = 1, 2, · · · , let νn = (2n−1)π
2a , Xn(x) = cos νnx and Yn(y) = sinhµn(b − y), then un(x, y) =

Xn(y)Yn(y) = cos (2n−1)πx
2a sinh (2n−1)π

2a (b− y).

By the superposition principle,

u2(x, y) =

∞∑
n=1

bnun(x, y) =

∞∑
n=1

bn cos (2n−1)πx
2a sinh (2n−1)π

2a (b− y)

Now, use the remaining boundary condition to find the constants bn.
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∂u2

∂y
(x, y) =

∞∑
n=1

− (2n−1)π
2a bn cos (2n−1)πx

2a cosh (2n−1)π
2a (b− y)

∂u2

∂y
(x, 0) =

∞∑
n=1

− (2n−1)π
2a cosh (2n−1)πb

2a bn cos (2n−1)πx
2a = f(x), 0 < x < a

By the uniqueness of the F. series, assuming f is sectionally continuous,

bn = − 4

(2n− 1)π cosh (2n−1)πb
2a

ˆ a

0
f(x) cos (2n−1)πx

2a dx.

Finally,

u(x, y) =

∞∑
n=1

an cosh (2n−1)πx
2b cos (2n−1)πy

2b +

∞∑
n=1

bn cos (2n−1)πx
2a sinh (2n−1)π

2a (b− y) where

an =
2

b cosh (2n−1)πa
2b

ˆ b

0
g(y) cos (2n−1)πy

2b dy and bn = − 4

(2n− 1)π cosh (2n−1)πb
2a

ˆ a

0
f(x) cos (2n−1)πx

2a dx.

4.5 Potential in a Disk

We want to solve the Dirichelt’s problem in a disk. PUT THE GRAPH HERE.

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0, 0 < r < c, −π < θ < π

u(c, θ) = f(θ), −π < θ < π

u(r, −π) = u(r, π), 0 < r < c

∂u

∂θ
(r, −π) =

∂u

∂θ
(r, π), 0 < r < c

u(0, θ) bounded, −π < θ < π

We have used polar coordinates since the domain is a circle. In polar coordinates points (r, θ) and (r, θ+2π)
are the same point, so we just need to use a 2π length for θ values. This also implies that the solution
should be 2π periodic, since we must have u(r, θ) = u(r, θ + 2π). We have chosen to use the interval
(−π, π) for θ since it matches with the way we defined F. series. Now, since (r, −π) = (r, π), we should
have the same solution values at those points. The conditions u(r, −π) = u(r, π) and ∂u

∂θ (r, −π) = ∂u
∂θ (r, π)

ensures that 2π-periodic functions u and ∂u
∂θ are continuous at θ = ±π. Of course, we are looking for a

solution defined on the entire disk. Specifically, we will use that fact at the origin. This condition has been
listed as u(0, θ) bounded. We could have also stated that (0, θ) should be in the domain of u, or lim

r→0
u(r, θ)

must be a finite number.

Remark. Another option, in place of restricting θ, could have been to allow both u and f be 2π-periodic
functions and −∞ < θ <∞. In that case, we still need the continuity and boundedness conditions.

Apply the method of separation of variables. Assume u(r, θ) = h(r)φ(θ). Plug into PDE and continuity
and boundedness conditions to get the following irregular S-L EVP and ODE with an added boundedness
condition. Note: I used φ(θ) rather than Θ(θ) for ease of hand writing. Classroom discussion!
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φ′′(θ) = −λφ(θ), −π < θ < π

φ(−π) = φ(π)

φ′(−π) = φ′(π)

r2h′′(r) + rh(r)− λh(r) = 0, 0 < r < c

R(0) bounded

By the (Irregular) S-L theorem, λ ≥ 0. If λ = 0, then φ(θ) = c1θ + c2 and φ(−π) = φ(π) implies that
c1 = 0. Thus φ(θ) = c2 and the constant function also satisfies the 2nd boundary condition.

Now, assume λ > 0. Since we have not solved this EVP before, we will solve it here.

Characteristic Equation: r2 = −λ⇒ r = ±
√
λ i =⇒ φ(θ) = c1 cos

√
λ θ + c2 sin

√
λ θ

Continuity Condition for q: φ(−π) = φ(π) ⇒ · · · ⇒ 2c2 sin
√
λπ = 0

Continuity Condition for φ′: φ′(−π) = φ′(π) ⇒ · · · ⇒ 2c1

√
λ sin

√
λπ = 0

Classroom discussion!

Since
√
λ > 0 and not both c1 and c2 can be zero (why?), we must have sin

√
λπ = 0. Thus λ = n2 for

n = 1, 2, · · · and φ(θ) = c1 cosnθ + c2 sinnθ. Classroom discussion!
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Remark. Notice that we can combine these two cases and write solutions as λ = n2 and φ(θ) = c1 cosnθ+
c2 sinnθ for n = 0, 1, · · · . (For n=0, λ = 0 and φ(θ) = c1.)

For λ = 0, the solution of r2h′′(r) + rh(r) + λh(r) = r ddr
(
r dhdr
)

= 0 with R(0) bounded is h(r) = d1.
Classroom discussion!

For λ = n2, n = 1, 2, · · · , the equation r2h′′(r) + rh(r)−n2h(r) = 0 is the well-known Cauchy-Euler equa-
tion, whose solutions are of the form h(r) = rα. Pluggingh(r) = rα, h′(r) = αrα−1 and h′′(r) = α(α−1)rα−2

into the ODE we will get α = ±n. The two linearly independent solutions are h1 = r−n and h2 = rn and
the general solution is h(r) = d1r

−n + d2r
n. The condition R(0) bounded implies that h(r) = d2r

n. See
Review, Identities, Formulas and Theorems. Classroom discussion!

Remark. We can also combine these two cases and write solutions as φ(θ) rn for n = 0, 1, · · · .

By the superposition principle,

u(r, θ) = a0 +
∞∑
n=1

(an cosnθ + bn sinnθ) rn

Now, use the remaining boundary condition to find the constants.

u(c, θ) = a0 +

∞∑
n=1

(cn an cosnθ + cn bn sinnθ) = f(θ), −π < θ < π

By the uniqueness of the F. series and the convergence theorem, assuming f is continuous and sectionally
smooth,

a0 = 1
2π

ˆ π

−π
f(θ) dθ, an = 1

πcn

ˆ π

−π
f(θ) cosnθ dθ and bn = 1

πcn

ˆ π

−π
f(θ) sinnθ dθ.

Notice the following property of this solution that can be generalized. At r = 0, u(0, θ) = a0 =

1
2π

ˆ π

−π
f(θ) dθ = 1

2π

ˆ π

−π
u(c, θ) dθ. That is, the solution at the origin is the average value of the boundary

condition on the circle of radius c, centered at the origin.
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Theorem. (Mean Value Property) Suppose ∇2u = 0 on some connected, open region Ω with smooth
boundary. Then for any disk of radius c centered at the origin, which lies entirely in Ω, the value of u at
the origin is the average value of u on the boundary of the disk, circle of radius c centered at the origin.

u(0, θ) =
1

2π

ˆ π

−π
u(c, θ) dθ

Remark. This theorem is also true if the center of the disk is at any point P . The value of u at the point
P is the average value of u on the boundary of the disk of radius c, centered at P . PUT THE GRAPH
HERE.

Exercises: 1. Solve the above problem for f(θ) = 1.
2. Solve the Laplace equation on the half-plane.

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0, 0 < r < c, 0 < θ < π

u(c, θ) = f(θ), 0 < θ < π

u(r, 0) = u(r, π) = 0, 0 < r < c

u(0, θ) bounded, 0 < θ < π

3. Solve the Laplace equation on the quarter-plane.

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0, 0 < r < c, 0 < θ < π

2

u(c, θ) = f(θ), 0 < θ < π
2

u(r, 0) = u(r, π2 ) = 0, 0 < r < c

u(0, θ) bounded, 0 < θ < π
2

4.6 Classification of Partial Differential Equations (Classification and Limita-

tions in the Course Textbook)

So far we have studies heat, wave and potential equations. Here is a summary of their qualitative features.

Equation Features

Heat Exponential behavior in time. Existence of a limiting (steady-state) solution.
Smooth graph for t > 0.

Wave Oscillatory (not always periodic) behavior in time. Retention of discontinu-
ity for t > 0.

Potential Smooth surface, Maximum Principle, Mean Value Property

The most general 2nd-order linear PDE is two variables is

A
∂2u

∂ξ2
+B

∂2u

∂ξ∂η
+ C

∂2u

∂η2
+D

∂u

∂ξ
+D

∂u

∂η
+ F u+G = 0

where the coefficient A, B, · · · are, in general, functions of ξ and η. We classify these PDE’s as follows:

Elliptic at (ξ, η) if B2 − 4AC < 0 at (ξ, η)

Parabolic at (ξ, η) if B2 − 4AC = 0 at (ξ, η)

Hyperbolic at (ξ, η) if B2 − 4AC > 0 at (ξ, η)
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The potential equation is elliptic, the heat equation is parabolic and the wave equation is hyperbolic.
(Check it!)

Example. Classify the Tricomi equation y uxx + uyy = 0.
Classroom discussion!

Canonical Forms of Second Order Linear PDE’s -

Equation Canonical Form

Elliptic uξξ + uηη + terms with lower-order derivatives = 0

Parabolic uξξ + terms with lower-order derivatives = 0

uξη + terms with lower-order derivatives = 0

Hyperbolic or

uξξ − uηη + terms with lower-order derivatives = 0

Any of these three types of equations can be put in their canonical form, by simply making an appropriate
change of coordinate system.

In this section our book also has a discussion on where we might be able to use the method of separation
of variables. Read it!



Chapter 5

Problems in Several Dimensions

5.1 Two-Dimensional Heat and Wave Equations (Sections 5.1 and 5.2 in the

course textbook)

Here I will merely state these equations and leave the derivation for you to read from the course textbook.
The two dimensional heat equation is

κ

(
∂2u

∂x2
+
∂2u

∂y2

)
= ρ c

∂u

∂t
− g , g is the heat generation rate

I.C. u(x, y, 0) = f(x, y)

and the boundary conditions can be any of the three types we have seen before, or mixed ones.

If no heat is generated, g ≡ 0, and letting k = κ
ρc we get

∂2u

∂x2
+
∂2u

∂y2
=

1

k

∂u

∂t
.

This equation, for example, describes the temperature, u(x, y, t), in a thin plate of heat-conducing material
with insulated surfaces, at any given time t.

The two-dimensional wave equation is

∂2u

∂x2
+
∂2u

∂y2
=

1

c2

∂2u

∂t2

B.C. u(x, y, t) = 0 for (x, y) on the bounday

I.C.

 u(x, y, 0) = f(x, y)
∂u

∂t
(x, y, 0) = g(x, y)

This equation, for example, describes the disposition, u(x, y, t), of each point of a membrane which is
tretched taut over a flat frame in the xy-plane, at any given time. If the membrane line flat at time zero,
then f(x, y) = 0, and if the velocity of each point of the membrane at time t = 0 is zero, then g(x, y) = 0.

5.3 Solution of the Two-Dimensional Heat Equation

We want to solve the initial value - boundary value problem stemming from the diffusion of the heat
equation in a rectangular plate of uniform, isotropic material.

89



CHAPTER 5. PROBLEMS IN SEVERAL DIMENSIONS 90

∂2u

∂x2
+
∂2u

∂y2
=

1

k

∂u

∂t
, 0 < x < a, 0 < y < b, t > 0

u(x, 0, t) = f1(x), u(x, b, 0) = f2(x), 0 < x < a, t > 0

u(0, y, t) = g1(y), u(a, y, 0) = g2(y), 0 < y < b, t > 0

u(x, y, 0) = f(x, y), 0 < x < a, 0 < y < b

The steady-state temperature, v(x, y), is the solution of

∂2v

∂x2
+
∂2v

∂y2
= 0, 0 < x < a, 0 < y < b

v(x, 0) = f1(x), v(x, b) = f2(x), 0 < x < a

v(0, y) = g1(y), v(a, y) = g2(y), 0 < y < b

which we already know how to solve: Chapter 4, Section 2.

Therefore. what remains is to find the transient temperature w(x, y, t) = u(x, y, t)−v(x, y) which satisfies

∂2w

∂x2
+
∂2w

∂y2
=

1

k

∂w

∂t
, 0 < x < a, 0 < y < b, t > 0

w(x, 0, t) = w(x, b, 0) = 0, 0 < x < a, t > 0

w(0, y, t) = w(a, y, 0) = 0, 0 < y < b, t > 0

u(x, y, 0) = f(x, y)− v(x, y), 0 < x < a, 0 < y < b

Let w(x, y, t) = φ(x, y)h(t) and then apply the method of separation of variables. To solve the result-
ing two-dimensional eigenvalue problem in the function φ, let φ(x, y) = X(x)Y (y) and, again, apply the
method of separation of variables to get two one-dimensional eigenvalue problems. Combine the solutions
in a double sum using superposition principle and find the constants using the initial condition which
results in a double Fourier series. Classroom discussion!
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Remarks: 1. If f is smooth enough (all partial derivatives of large enough order exist) then the step of
mathematical justification can be performed, and so w(x, y, t) above will actually be a solution.

2. After learning to solve two-dimensional eigenvalue problems, we will use the Review, Identities, Formu-
las and Theoremshandout.

3. After learning about double Fourier series, we will use the Review, Identities, Formulas and Theo-
remshandout.

Exercises: Show the following.

1.

ˆ a

0

ˆ b

0
sin nπx

a cos mπyb sin pπx
a cos qπyb dy dx =


ab
2 , if n = p 6= 0 and m = q = 0
ab
4 , if n = p 6= 0 and m = q 6= 0

0, otherwise

2.

ˆ a

0

ˆ b

0
cos nπxa cos mπyb cos pπxa cos qπyb dy dx =



ab, if n = m = p = q = 0
ab
2 , if n = p 6= 0 and m = q = 0
ab
2 , if n = p = 0 and m = q 6= 0
ab
4 , if n = p 6= 0 and m = q 6= 0

0, otherwise

3.


∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

φ(0, y) = φ(a, y) = 0
∂φ

∂y
(x, 0) =

∂φ

∂y
(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = sin nπx
a cos mπyb

for n = 1 , 2 , · · · and m = 0 , 1 , · · ·

4.



∂2φ

∂x2
+
∂2φ

∂y2
= −λφ(x, y)

∂φ

∂x
(0, y) =

∂φ

∂x
(a, y) = 0

∂φ

∂y
(x, 0) =

∂φ

∂y
(x, b) = 0

=⇒
λ = (nπa )2 + (mπb )2

φ(x) = cos nπxa cos mπyb

for n = 0 , 1 , · · · and m = 0 , 1 , · · ·

5. If f(x, y) =
∞∑
n=1

∞∑
m=0

Cnm sin
nπx

a
cos

mπy

b
for (x, y) ∈ (0, a)× (0, b), then

Cn0 = 2
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a dy dx and Cnm = 4
ab

ˆ a

0

ˆ b

0
f(x, y) sin nπx

a cos mπyb dy dx

6. If f(x, y) =

∞∑
n=0

∞∑
m=0

Anm cos
nπx

a
cos

mπy

b
for (x, y) ∈ (0, a)× (0, b), then

A00 = 1
ab

ˆ a

0

ˆ b

0
f(x, y) dy dx , An0 = 2

ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa dy dx ,

A0m = 2
ab

ˆ a

0

ˆ b

0
f(x, y) cos mπya dy dx and Anm = 4

ab

ˆ a

0

ˆ b

0
f(x, y) cos nπxa cos mπyb dy dx

5.4 Problems in Polar Coordinates

In this section we will motivate study of Bessel’s equation by considering the problems of the vibration
of a circular membrane (two-dimensional wave equation) and the conduction of heat in a circular plate
(two-dimensional heat equation) in polar coordinates.
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Wave Heat

∇2u =
1

c2

∂2u

∂t2
∇2u =

1

k

∂2u

∂t2
, 0 < r < a, −π < θ ≤ π, t > 0

u(a, θ, t) = f(θ) u(a, θ, t) = f(θ) , −π < θ ≤ π, t > 0

u(r, θ, 0) = g(r, θ) u(r, θ, 0) = g(r, θ) , 0 < r < a, −π < θ ≤ π
∂u

∂t
(r, θ, 0) = h(r, θ) , 0 < r < a, −π < θ ≤ π

u(r, −π, t) = u(r, π, t) u(r, −π, t) = u(r, π, t) , 0 < r < a, t > 0
∂u

∂θ
(r, −π, t) =

∂u

∂θ
(r, π, t)

∂u

∂θ
(r, −π, t) =

∂u

∂θ
(r, π, t) , 0 < r < a, t > 0

u(0, θ, t) defined u(0, θ, t) defined , −π < θ ≤ π, t > 0

Although it is obvious from the physical considerations that we are looking for a bounded solution, here
we have stated it explicitly for r = 0 since we will use it mathematically.

The time-independent solution v is the solution of

∇2v = 0, 0 < r < a, −π < θ ≤ π
v(a, θ) = f(θ), −π < θ ≤ π
v(r, −π) = v(r, π), 0 < r < a
∂v

∂θ
(r, −π) =

∂v

∂θ
(r, π), 0 < r < a

v(0, θ) defined, −π < θ ≤ π

for both cases. We can solve for v as we did in Chapter 4, Section 5. Therefore, what remains is to find
the transient temperature w(x, y, t) = u(x, y, t)− v(x, y) which satisfies

Wave Heat

∇2w =
1

c2

∂2w

∂t2
∇2w =

1

k

∂2w

∂t2
, 0 < r < a, −π < θ ≤ π, t > 0

w(a, θ, t) = 0 w(a, θ, t) = 0 , −π < θ ≤ π, t > 0

w(r, θ, 0) = g(r, θ)− v(r, θ) w(r, θ, 0) = g(r, θ)− v(r, θ) , 0 < r < a, −π < θ ≤ π
∂w

∂t
(r, θ, 0) = h(r, θ) , 0 < r < a, −π < θ ≤ π

w(r, −π, t) = w(r, π, t) w(r, −π, t) = w(r, π, t) , 0 < r < a, t > 0
∂w

∂θ
(r, −π, t) =

∂w

∂θ
(r, π, t)

∂w

∂θ
(r, −π, t) =

∂w

∂θ
(r, π, t) , 0 < r < a, t > 0

w(0, θ, t) defined w(0, θ, t) defined , −π < θ ≤ π, t > 0

Let w(r, θ, t) = φ(r, θ)h(t) and then apply the method of separation of variables. To solve the resulting
two-dimensional eigenvalue problem in the function φ, let φ(r, θ) = R(r)Θ(θ) and, again, apply the method
of separation of variables. Classroom discussion!
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In either case, we get the following ODE, called Bessel’s equation, and boundary conditions.
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r2R′′(r) + rR′(r)± ν2r2R(r) = µ2R(r), 0 < r < a

R(0) defined

R(a) = 0

5.5 Bessel’s Equation

Definitions: Consider the ODE P (x)
d2y

dx2
+Q(x)

dy

dx
+R(x)y = 0 with P , Q and R are polynomials with

no common factor.
1. A point (number) x0 is called singular if P (x0) = 0.

2. The singular point x0 is called regular if lim
x→x0

(x− x0)
Q(x)

P (x)
and lim

x→x0
(x− x0)2R(x)

P (x)
are both finite.

Remark. This is not the most general definition of a singular point.

If x0 is a regular singular point, then (x − x0)
Q(x)

P (x)
and (x − x0)2R(x)

P (x)
are analytic at x0; they have

convergent power series expansion at x0. To solve an ODE near the regular singular point x0, we look for

a seris solution of the form y(x) = (x− x0)r
∞∑
n=0

an(x− x0)2 with r and an’s to be determined.

Definition. An ODE of the form x2 y′′(x) + x y′(x)± ν2 x2 y(x) = µ2 y(x), with µ ≥ 0 and ν > 0, is called
a Bessel’s equation.

If we divide both sides of this equation by x, we can write it in the form (x y′)′ + (±ν2 x− µ2

x )y = 0.

Definitions: 1. An ODE of the form (x y′)′ + (ν2 x− µ2

x )y = 0, with µ ≥ 0 and ν > 0, is called a Bessel’s
equation of order µ and parameter ν.

2. An ODE of the form (x y′)′− (ν2 x+ µ2

x )y = 0, with µ ≥ 0 and ν > 0, is called a Bessel’s equation with
purely imaginary argument of order µ and parameter ν.

It is easy to check that x = 0 is a regular singular point for the Bessel’s equation. Now, we look for the

series solution of the form y = xr
∞∑
n=0

an x
n with a0 6= 0. By plugging in y, y′ =

∞∑
n=0

(r + n)an x
r+n−1 and

y′′ =
∞∑
n=0

(r+ n)(r+ n− 1)an x
r+n−2 into the Bessel’s equation, we can find its series solutions. Classroom

discussion!
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For the case “+ν2” and µ a nonnegative integer, one solution is y1(x) =

∞∑
m=0

(−1)m

m! (m+ µ)!

(νx
2

)2m+µ
.
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A second linearly independent solution y2 can be found in several ways, including the following. Classroom
discussion!

A second linearly independent solution is y2(x) = y1(x)

ˆ
dx

x y2
1(x)

, where C = 0 is used for the constant

of integration.

Definitions: 1. Jµ(x) =
∞∑
m=0

(−1)m

m! (m+ µ)!

(x
2

)2m+µ
is called the Bessel function of the first kind of order

µ.

2. Yµ(x)) = Jµ(x)

ˆ
dx

x J2
µ(x)

, where C = 0 is used for the constant of integration, is called the Bessel

function of the second kind of order µ.

Two linearly independent solutions of (x y′)′ + (ν2 x− µ2

x )y = 0 are Jµ(ν x) and Yµ(ν x).

Properties of Jµ(x) and Yµ(x)

1. For x very small, but positive, Jµ(x) ≈ 1
µ!(

x
2 )µ. Also, J0(0) = 1 and Jµ(0) = 0 for µ > 0.

2. Yµ(x) ≈ Constant×

{
lnx, µ = 0

x−µ, µ > 0
, so |Yµ(x)| → ∞ as x→ 0.

3. Jµ(x)→ 0 and Yµ(x)→ 0 as x→∞.
4. Jµ(x) and Yµ(x) have an infinite number of positive zeros. Also, J0(x) and J1(x) have no roots in
common.
5. d

dx(x−µJµ(x)) = −x−µJµ+1(x) =⇒
´
x−µJµ+1(x) dx = −x−µJµ(x) + C and

d
dx(xµ+1Jµ+1(x)) = xµ+1Jµ(x) =⇒

´
xµ+1Jµ(x) dx = xµ+1Jµ+1(x) + C.

6. J ′0(x) = −J1(x) =⇒
´
J1(x) dx = −J0(x) + C and d

dx(xJ1(x)) = xJ0(x) =⇒
´
xJ0(x) dx = xJ1(x) + C.

7. Suppose 0 < α1 < α2 < · · · are positive zeros of Jµ(x). Then
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ˆ a

0
Jµ(

αnx

a
)Jµ(

αmx

a
)x dx =

{
0, n 6= m
a2

2 J
2
µ+1(αm) n = m

.

8. Suppose 0 < β1 < β2 < · · · are positive zeros of J1(x) (or J ′0(x)). Thenˆ a

0
J0(

βnx

a
)J0(

βmx

a
)x dx = 0 for n 6= m.

9. Suppose 0 < β1 < β2 < · · · are positive zeros of J0(x). Thenˆ a

0
J1(

βnx

a
)J1(

βmx

a
)x dx = 0 for n 6= m.

10. PUT GRAPHS HERE!

11. Convergence Theorems - Suppose f(x) is sectionally smooth on the interval (0, a) and x is any
point on that interval. Then the following generalized Fourier series hold.

For 0 < α1 < α2 < · · · positive zeros of J0(x),
∞∑
n=1

anJ0(
αnx

a
) =

1

2
(f(x−) + f(x+)) where an =

2

a2J2
1 (αn)

ˆ a

0
f(x)J0(

αnx

a
)x dx.

For 0 < α1 < α2 < · · · positive zeros of Jµ(x),
∞∑
n=1

anJµ(
αnx

a
) =

1

2
(f(x−) + f(x+)) where an =

2

a2J2
µ+1(αn)

ˆ a

0
f(x)Jµ(

αnx

a
)x dx.

For 0 < β1 < β2 < · · · positive zeros of J1(x) (or J ′0(x)),

a0+
∞∑
n=1

anJ0(
βnx

a
) =

1

2
(f(x−)+f(x+)) where a0 =

2

a2

ˆ a

0
f(x)x dx and an =

ˆ a

0
f(x)J0(

βnx

a
)x dxˆ a

0
J2

0 (
βnx

a
)x dx

.

For 0 < β1 < β2 < · · · positive zeros of J ′µ(x) with µ > 0,

∞∑
n=1

anJµ(
βnx

a
) =

1

2
(f(x−) + f(x+)) where an =

ˆ a

0
f(x)Jµ(

βnx

a
)x dxˆ a

0
J2
µ(
βnx

a
)x dx

.

Now, consider the case “−ν2” and µ still a nonnegative integer. Two linearly independent solutions of

(x y′)′ − (ν2 x+ µ2

x )y = 0 are Iµ(ν x) and Kµ(ν x), which are defined below.

Definitions: 1. Iµ(x) =
∞∑
m=0

1

m! (m+ µ)!

(x
2

)2m+µ
is called the modified Bessel function of the first kind

of order µ.

2. Kµ(x)) = Iµ(x)

ˆ
dx

x I2
µ(x)

, where C = 0 is used for the constant of integration, is called the modified

Bessel function of the second kind of order µ.
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A Few Facts About Iµ(x) and Kµ(x)

1. As x→ 0, |Kµ(x)| → ∞, I0(0) = 1 and Iµ(0) = 0 for µ > 0.
2. Iµ(x) and I ′0(x) have no real-valued zeros.
3. As x→∞, Kµ(x)→ 0 and Iµ(x)→∞ for µ ≥ 0.
4. PUT GRAPHS HERE!

Remarks: 1. All of the above hold even if µ is not a nonnegative integer. In that case, (m+ µ)! must be

replaced by Γ(m+ µ+ 1) where Γ(p) =

ˆ ∞
0

tp−1e−t dt.

2. J 1
2
(x) =

(
2

πx

) 1
2

sinx and I 1
2
(x) =

(
2

πx

) 1
2

sechx

Exercises: 1. Show that for m 6= m,

ˆ a

0
Jz(

αmr
a )Jz(

αmr
a ) r dr = 0 where 0 < α1 < α2 < · · · are zeros of

Jz(x) and z ≥ 0.

2. Show that for m 6= m,

ˆ a

0
Jz(

βmr
a )Jz(

βmr
a ) r dr = 0 where 0 < β1 < β2 < · · · are zeros of J ′z(x) and

z ≥ 0.

3. Show that the eigenvalues of the eigenvalue problem


x2d

2φ

dx2
+ x

dφ

dx
+ (λx2 − n2)φ = 0

φ(0) bounded

φ(a) = 0

are negative,

where n = 0, 1, · · · .

4. Suppose 0 < α1 < α2 < · · · are zeros of Jz(x), with z ≥ 0, and f(r) =
∞∑
n=1

anJz(
αnr

a
) for 0 < r < a.

Show that an =

ˆ a

0
f(r)Jz(

αnr
a )r dr

ˆ a

0
J2
z (αnra )r dr

.

5. Solve the eigenvalue problem


d

dr
(r2 df

dr
) + (λ r2 − n(n+ 1))f = 0, 0 < r < a

f(0) defined

f(a) = 0

by using the substi-

tution h(r) = r
1
2 f(r) or f(r) = r−

1
2h(r), where n = 0, 1, · · · .

5.6 Temperature in a Cylinder

Suppose that the temperature u(r, θ, t) in a cylinder of radius a satisfies the following problem.
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∇2u =
1

k

∂u

∂t
, 0 < r < a, −π < θ ≤ π, t > 0

u(a, θ, t) = 0, −π < θ ≤ π, t > 0

u(r, θ, 0) = f(r), 0 < r < a, −π < θ ≤ π
u(0, θ, t) defined, −π < θ ≤ π, t > 0

We first should mention that if f(r) ≡ 0, then u ≡ 0 is the solution. Assuming f(r) 6≡ 0, we can simplify
this problem by showing that u is independent of θ. Let u(r, θ, t) = R(r)Θ(θ)h(t) and apply the boundary
condition to show u(r, θ, t) = R(r)h(t). Classroom discussion!

Remark. In general, the solution will be independent of a variable, if all initial and boundary conditions
are independent of that variable.

Thus our problem is reduced to finding u(r, t) for which

∂2u

∂r2
+

1

r

∂u

∂r
=

1

k

∂u

∂t
, 0 < r < a, t > 0

u(a, t) = 0, t > 0

u(r, 0) = f(r), 0 < r < a

u(0, t) defined, t > 0

Let u(r, t) = R(r)h(t), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

(r R′)′ + λ r R = 0, 0 < r < a

R(a) = 0,

R(0) defined,

and
T ′(t)

h(t)
= −λ k

Obviously, h(t) = C e−λkt. We can solve for R several different ways. 1. Consider the three cases: λ < 0,
λ = 0 and λ > 0. 2. Use one of the exercises in the last section to just consider the case λ > 0. 3. Finally,
we could just use the Review, Identities, Formulas and Theoremshandout. The choice will depend on the
wording of the problem. Classroom discussion!
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In any case, we will get λ = ν2
n = (αna )2, Rn(r) = J0(νnr) = J0(αnra ) where 0 < α1 < α2 < · · · are zeros of

J0(x) and Tn(t) = e−ν
2
nkt. By the superposition principle, u(r, t) =

∞∑
n=1

anJ0(
αnr

a
)e−

α2nkt

a2 . Find an’s using

the initial condition.

u(r, 0) =
∞∑
n=1

anJ0(
αnr

a
) = f(r), 0 < r < a.

Using an earlier result, assuming f is continuous and sectionally smooth, we get

an =

ˆ a

0
f(r)J0(

αnr

a
)r dr

ˆ a

0
J2

0 (
αnr

a
)r dr

=
2

a2J2
1 (αn)

ˆ a

0
f(r)J0(

αnr

a
)r dr.

5.7 Vibration of a Circular Membrane

We want to solve the problem of describing the displacement of a circular membrane that is fixed at its
edges. If the initial conditions are independent of θ (B.C. is already independent of θ), then solution will
be independent of θ. This is the case we will solve.

∂2u

∂r2
+

1

r

∂u

∂r
=

1

c2

∂2u

∂t2
, 0 < r < a, t > 0

u(a, t) = 0, t > 0

u(r, 0) = f(r), 0 < r < a
∂u

∂t
(r, 0) = g(r), 0 < r < a

u(0, t) defined, t > 0

Let u(r, t) = R(r)h(t), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

(r R′)′ + λ r R = 0, 0 < r < a

R(a) = 0,

R(0) defined,

and T ′′(t) + λ c2h(t) = 0

We have learned that λ = ν2
n = (αna )2, Rn(r) = J0(νnr) = J0(αnra ) where 0 < α1 < α2 < · · · are zeros of

J0(x). The general solution of T ′′(t)− (αna )2 c2h(t) = 0 is Tn(t) = c1 cos(αncta ) + c2 sin(αncta ).

By the superposition principle, u(r, t) =
∞∑
n=1

[an cos(
αnct

a
) + bn sin(

αnct

a
)]J0(

αnr

a
). Assuming we can dif-
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ferentiate term-by-term with respect to t,
∂u

∂t
(r, t) =

∞∑
n=1

[−αnc
a
an sin(

αnct

a
) +

αnc

a
bn cos(

αnct

a
)]J0(

αnr

a
).

Find the constants an and bn using the initial conditions. Classroom discussion!

Therefore, u(r, t) =
∞∑
n=1

[an cos(
αnct

a
) + bn sin(

αnct

a
)]J0(

αnr

a
) with

an =
2

a2J2
1 (αn)

ˆ a

0
f(r)J0(

αnr

a
)r dr and bn =

2

aαn c J2
1 (αn)

ˆ a

0
f(r)J0(

αnr

a
)r dr.

5.9 Spherical Coordinates; Legendre Polynomials

x = ρ sinφ cos θ
y = ρ sinφ sin θ
z = ρ cosφ
ρ =

√
x2 + y2 + z2

−π ≤ θ ≤ π, 0 ≤ φ ≤ π, ρ ≥ 0

PUT GRAPH HERE

We want to write ∇2u in spherical coordinates. Using the chain rule we will find the partial derivatives
of ρ, φ and θ with respect to each of the variables x, y and z and use them to find the first and second
partial derivatives of u with respect to each of the variables x, y and z.

∂ρ
∂x = 1

2(x2 + y2 + z2)−
1
2 2x = · · · = sinφ cos θ. Similarly, ∂ρ

∂y = sinφ sin θ and ∂ρ
∂z = cosφ.

∂
∂z (z = ρ cosφ) =⇒ · · · =⇒ ∂φ

∂z = − sinφ
ρ . Similarly, ∂φ

∂x = cos θ cosφ
ρ (since ∂z

∂x = 0) and ∂φ
∂y = sin θ cosφ

ρ .

∂
∂x(x = ρ sinφ cos θ) =⇒ · · · =⇒ ∂θ

∂x = − sin θ
ρ sinφ , ∂

∂y (y = ρ sinφ sin θ) =⇒ · · · =⇒ ∂θ
∂y = cos θ

ρ sinφ and ∂θ
∂z = 0

since θ does not depend on z.
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Classroom discussion!

∂u
∂x = ∂u

∂ρ
∂ρ
∂x + ∂u

∂θ
∂θ
∂x + ∂u

∂φ
∂φ
∂x = cos θ sinφ∂u∂ρ −

sin θ
ρ sinφ

∂u
∂θ + cos θ cosφ

ρ
∂u
∂φ

∂2u
∂x2

= ∂
∂x(∂u∂x) = ∂

∂ρ(∂u∂x) ∂ρ∂x + ∂
∂θ (∂u∂x) ∂θ∂x + ∂

∂φ(∂u∂x)∂φ∂x = · · · = cos2 θ sin2 φ∂
2u
∂ρ2

+ 2 sin θ cos θ
ρ2 sin2 φ

∂u
∂θ − 2 sin θ cos θ

ρ
∂2u
∂ρ∂θ +

sin2 θ cosφ−2 cos2 θ sin2 φ cosφ
ρ2 sinφ

∂u
∂φ + 2 cos2 θ sinφ cosφ

ρ
∂2u
∂ρ∂φ + sin2 θ+cos2 θ cos2 φ

ρ
∂u
∂ρ + sin2 θ

ρ2 sin2 φ
∂2u
∂θ2
− 2 sin θ cos θ cosφ

ρ2 sinφ
∂2u
∂θ∂φ +

cos2 θ cos2 φ
ρ2

∂2u
∂φ2

Classroom discussion!

Similarly, we can derive the following.

∂u
∂y = sin θ sinφ∂u∂ρ + cos θ

ρ sinφ
∂u
∂θ + sin θ cosφ

ρ
∂u
∂φ

∂u
∂z = cosφ∂u∂ρ +− sinφ

ρ
∂u
∂φ

∂2u
∂y2

= sin2 θ sin2 φ∂
2u
∂ρ2
− 2 sin θ cos θ

ρ2 sin2 φ
∂u
∂θ + 2 sin θ cos θ

ρ
∂2u
∂ρ∂θ + −2 sin2 θ sin2 φ cosφ+cos2 θ cosφ

ρ2 sinφ
∂u
∂φ + 2 sin2 θ sinφ cosφ

ρ
∂2u
∂ρ∂φ +

sin2 θ cos2 φ+cos2 θ
ρ

∂u
∂ρ + cos2 θ

ρ2 sin2 φ
∂2u
∂θ2

+ 2 sin θ cos θ cosφ
ρ2 sinφ

∂2u
∂θ∂φ + sin2 θ cos2 φ

ρ2
∂2u
∂φ2

∂2u
∂z2

= cos2 φ∂
2u
∂ρ2

+ 2 sinφ cosφ
ρ2

∂u
∂φ − 2 sinφ cosφ

ρ
∂2u
∂ρ∂φ + sin2 φ

ρ
∂u
∂ρ + sin2 φ

ρ2
∂2u
∂φ2
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Classroom discussion!

After substituting in ∇2u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

and simplifying, we will get

∇2u =
1

ρ2

∂

∂ρ

(
ρ2∂u

∂ρ

)
+

1

ρ2 sinφ

∂

∂φ

(
sinφ

∂u

∂φ

)
+

1

ρ2 sin2 φ

∂2u

∂θ2
.

Classroom discussion!

Now, consider the ODE

d

dφ

(
sinφ

dg

dφ

)
+

(
µ sinφ− m2

sinφ

)
g(φ) = 0, m = 0, 1, · · · .

Let s = cosφ. Then ds
dφ = sinφ, dgdφ = dg

ds
ds
dφ = − sinφdgds and d

dφ(sinφ dgdφ) = · · · = −2 sinφ cosφdgds+sin3 φd
2g
ds2

.
Substituting these into the ODE and simplifying, we get

d

ds

[
(1− s2)

dg

ds

]
+

[
µ− m2

1− s2

]
g(s) = 0.

Classroom discussion!
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5.9.1 Legendre’s Equation and Polynomials

Definition. An ODE of the form
d

ds

[
(1− s2)

dg

ds

]
+

[
n(n+ 1)− m2

1− s2

]
g(s) = 0, with m = 0, 1, · · · and

m ≤ n = 0, 1, · · · , is called a Legendre’s equation.

s = 0 is an ordinary point for the Legendre’s equation. So, we can look for the series solution of the

form g =

∞∑
k=0

ak s
k. By plugging in g, g′ =

∞∑
k=1

k ak s
k−1 and g′′ =

∞∑
k=2

k(k − 1) ak s
k−2 into the Legendre’s

equation, we can find its series solutions. Classroom discussion!
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Definitions: 1. Pn(s) =
∑L

l=0(−1)l (2n−2l)!
l! (n−l)! (n−2l)! 2n s

n−2l where L = n
2 or n−1

2 , for n even or odd, respec-

tively, is called the Legendre polynomial (of degree n).
2. Pmn (s) = TO BE COMPLETED ...

Properties of (Associated) Legendre’s Polynomials

1. Pn(s) =
1

n! 2n
dn

dsn
(s2 − 1)n (Rodrigues’ formula). Also, Pn(−1) = (−1)n and Pn(1) = 1.

2. P0(s) = 1, P1(s) = s, P2(s) = 1
2(3s2 − 1), P3(s) = 1

2(5s3 − 3s) and P4(s) = 1
8(35s4 − 30s2 + 3). Pn(s) is

a polynomial of degree n.
3. PUT GRAPHS HERE!

4. (2n+ 1) s Pn(s) = (n+ 1)Pn+1(s) + nPn−1(s) and (2n+ 1)Pn(s) = P ′n+1(s)− P ′n−1(s).

5.

ˆ 1

−1
Pn(s)Pn(s) ds =

{
0, n 6= n

2
2n+1 , n = n

and

ˆ π

0
Pn(cosφ)Pn(cosφ) sinφdφ =

{
0, n 6= n

2
2n+1 , n = n

.

6. Pmn (s) = (s2 − 1)
m
2
dm

dsm
Pn(s) with n ≥ m > 0. Since Pn(s) is a polynomial of degree n, dm

dsmPn(s) = 0

for m > n. This is the reason for the requirement n ≥ m.
7. P 1

1 (s) = (s2 − 1)
1
2 , P 1

2 (s) = 3s(s2 − 1)
1
2 , P 2

2 (s) = 3s(s2 − 1), P 1
3 (s) = 3

2(5s2 − 1)(s2 − 1)
1
2 ,

P 2
3 (s) = 15s(s2 − 1) and P 3

3 (s) = 15(s2 − 1)
3
2 .

8. For m > 0,

ˆ 1

−1
Pmn (s)Pmn (s) ds =

{
0, n 6= n

2
2n+1

(n+m)!
(n−m)! , n = n ≥ m

and

ˆ π

0
Pmn (cosφ)Pmn (cosφ) sinφdφ =

{
0, n 6= n

2
2n+1

(n+m)!
(n−m)! , n = n ≥ m

.

9. (2n+ 1) s Pmn (s) = (n−m+ 1)Pmn+1(s) + (n+m)Pmn−1(s) and

10. Convergence Theorems - Suppose f(s) is sectionally smooth on the interval (−1, 1) and s is any
point on that interval. Then the following generalized Fourier series hold.

∞∑
n=0

anPn(s) =
1

2
(f(s−) + f(s+)) where an =

2n+ 1

2

ˆ 1

−1
f(s)Pn(s) ds.

∞∑
n=m

anP
m
n (s) =

1

2
(f(s−)+f(s+)) where m = 0, 1, · · · and an =

2n+ 1

2

(n−m)!

(n+m)!

ˆ 1

−1
f(s)Pmn (s) ds.

The solution of the eigenvalue problem
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
d

ds

[
(1− s2)

dg

ds

]
+

[
µ− m2

1− s2

]
g(s) = 0, −1 < s < 1, m = 0, 1, · · ·

g(−1) defined

g(1) = 1

is µ = n(n+ 1), g(s) = Pmn (s), where m ≤ n = 0, 1, · · · . Classroom discussion!

5.10 Some Applications of Legendre Polynomials

Consider the potential equation in a sphere of radius a.

∇2u = 0, 0 < ρ < a, −π < θ ≤ π, 0 < φ < π

u(a, θ, φ) = F (θ, φ), −π < θ ≤ π, 0 < φ < π

u(ρ, −π, φ) = u(ρ, π, φ) 0 < ρ < a, 0 < φ < π
∂u

∂θ
(ρ, −π, φ) =

∂u

∂θ
(ρ, π, φ) 0 < ρ < a, 0 < φ < π

u(0, θ, φ) defined, −π < θ ≤ π, 0 < φ < π

u(ρ, θ, 0) and u(ρ, θ, π) defined, 0 < ρ < a, −π < θ ≤ π

Let u(ρ, θ, φ) = f(ρ)q(θ)g(φ), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

q′′(θ) = −νq(θ), −π < θ ≤ π
q(−π) = q(π)

q′(−π) = q′(π)

,

d

dφ
(sinφ

dg

dφ
) + (µ sinφ− ν

sinφ
)g = 0, 0 < φ < π

g(0) and g(π) defined
and
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d

dρ
(ρ2 df

dρ
)− µf = 0, 0 < ρ < a

f(0) defined

We can show that ν = m2, m = 0, 1, · · · , q(θ) = cosmθ, sinmθ; µ = n(n + 1), m ≤ n = 0, 1, · · · ,
g(φ) = Pmn (cosφ); f(ρ) = ρn. Classroom discussion!

Thus, the product solutions are

u(ρ, θ, φ) = ρn

{
cosmθ

sinmθ

}
Pmn (cosφ), m = 0, 1, · · · , m ≤ n = 0, 1, · · · .

By the superposition principle,

u(ρ, θ, φ) =

∞∑
m=0

∞∑
n=m

Amn ρ
n cosmθPmn (cosφ) +

∞∑
m=0

∞∑
n=m

Bmn ρ
n sinmθPmn (cosφ).

Find the constants using the boundary condition u(a, θ, φ) = F (θ, φ),

∞∑
m=0

∞∑
n=m

Amn a
n cosmθPmn (cosφ) +

∞∑
m=0

∞∑
n=m

Bmn a
n sinmθPmn (cosφ) = F (θ, φ).

Classroom discussion!



CHAPTER 5. PROBLEMS IN SEVERAL DIMENSIONS 110

A0n = 2n+1
4πa2

ˆ π

0

ˆ π

−π
F (θ, φ)Pn(cosφ) sinφdθ dφ,

Amn = 2n+1
2πa2

(n−m)!
(n+m)!

ˆ π

0

ˆ π

−π
F (θ, φ) cosmθPmn (cosφ) sinφdθ dφ and

Bmn = 2n+1
2πa2

(n−m)!
(n+m)!

ˆ π

0

ˆ π

−π
F (θ, φ) sinmθPmn (cosφ) sinφdθ dφ

Now, consider the wave equation on a sphere of radius a.

∇2u =
1

c2

∂2u

∂t2
, 0 < ρ < a, −π < θ ≤ π, 0 < φ < π, t > 0

u(a, θ, φ, t) = 0, −π < θ ≤ π, 0 < φ < π, t > 0

u(ρ, θ, φ, 0) = F (ρ, θ, φ), 0 < ρ < a, π < θ ≤ π, 0 < φ < π
∂u

∂t
(ρ, θ, φ, 0) = 0, 0 < ρ < a, π < θ ≤ π, 0 < φ < π

u(ρ, −π, φ, t) = u(ρ, π, φ, t) 0 < ρ < a, 0 < φ < π, t > 0
∂u

∂θ
(ρ, −π, φ, t) =

∂u

∂θ
(ρ, π, φ, t) 0 < ρ < a, 0 < φ < π, t > 0

u(0, θ, φ, t) defined, −π < θ ≤ π, 0 < φ < π, t > 0

u(ρ, θ, 0, t) and u(ρ, θ, π, t) defined, 0 < ρ < a, −π < θ ≤ π, t > 0

Let u(ρ, θ, φ, t) = w(ρ, θ, φ)h(t), plug in to the PDE and boundary conditions to get the following
problems. Classroom discussion!

T ′′(t) = −λ c2 h(t), t > 0

T ′(0) = 0
and

∇2w = −λw, 0 < ρ < a, −π < θ ≤ π, 0 < φ < π

w(a, θ, φ) = 0, −π < θ ≤ π, 0 < φ < π, t > 0

w(ρ, −π, φ) = w(ρ, π, φ) 0 < ρ < a, 0 < φ < π
∂u

∂θ
(ρ, −π, φ) =

∂u

∂θ
(ρ, π, φ) 0 < ρ < a, 0 < φ < π

w(0, θ, φ) defined, −π < θ ≤ π, 0 < φ < π

w(ρ, θ, 0) and w(ρ, θ, π) defined, 0 < ρ < a, −π < θ ≤ π

Let w(ρ, θ, φ) = f(ρ)q(θ)g(φ), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!
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q′′(θ) = −νq(θ), −π < θ ≤ π
q(−π) = q(π)

q′(−π) = q′(π)

,

d

dφ
(sinφ

dg

dφ
) + (µ sinφ− ν

sinφ
)g = 0, 0 < φ < π

g(0) and g(π) defined
and

d

dρ
(ρ2 df

dρ
) + (λ ρ2 − µ)f = 0, 0 < ρ < a

f(0) defined

f(a) = 0

The solution of the first two eigenvalue problems are ν = m2, m = 0, 1, · · · , q(θ) = cosmθ, sinmθ;
µ = n(n + 1), m ≤ n = 0, 1, · · · , g(φ) = Pmn (cosφ). For the third problem, we make the substitution

h(ρ) = ρ
1
2 f(ρ) or f(ρ) = ρ−

1
2h(ρ) resulting in the following problem.Classroom discussion!

d

dρ
(ρ
dh

dρ
) + (λ ρ−

(n+ 1
2)2

ρ
)h = 0, 0 < ρ < a

ρ−
1
2h(ρ) defined, as ρ→ 0

h(a) = 0

The solution of this eigenvalue problem is λ = (αka )2, where 0 < α1 < α2 < · · · are zeros of Jn+ 1
2
(x)
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and h(ρ) = Jn+ 1
2
(αkρa ). So f(ρ) = ρ−

1
2 Jn+ 1

2
(αkρa ) and the solution of T ′′(t) = λ c2 h(t), T ′(0) = 0 is

h(t) = cos αkc ta , k = 1, 2, · · · . Classroom discussion!

Thus, the product solutions are

u(ρ, θ, φ, t) = ρ−
1
2 Jn+ 1

2
(αkρa )

{
cosmθ

sinmθ

}
Pmn (cosφ) cos αkc ta for

k = 1, 2, · · · ,m = 0, 1, · · · and m ≤ n = 0, 1, · · · .

By the superposition principle,

u(ρ, θ, φ, t) =
∞∑
m=0

∞∑
n=m

∞∑
k=1

Amnk ρ
− 1

2 Jn+ 1
2
(
αkρ

a
) cosmθPmn (cosφ) cos

αkc t

a
+

∞∑
m=1

∞∑
n=m

∞∑
k=1

Bmnk ρ
− 1

2 Jn+ 1
2
(
αkρ

a
) sinmθPmn (cosφ) cos

αkc t

a
.

Remark. In the second summation, m starts with 1, not zero, since sinmθ = 0 for m = 0.

Find the constants using the initial condition u(ρ, θ, φ, 0) = F (ρ, θ, φ),

∞∑
m=0

∞∑
n=m

∞∑
k=1

Amnk ρ
− 1

2 Jn+ 1
2
(
αkρ

a
) cosmθPmn (cosφ)+

∞∑
m=1

∞∑
n=m

∞∑
k=1

Bmnk ρ
− 1

2 Jn+ 1
2
(
αkρ

a
) sinmθPmn (cosφ) = F (ρ, θ, φ).

Classroom discussion!
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A0nk = 2n+1
2πa2J2

n+3
2

(αk)

ˆ a

0

ˆ π

0

ˆ π

−π
F (ρ, θ, φ)Jn+ 1

2
(αkρa )Pn(cosφ)ρ

3
2 sinφdθ dφ dρ,

Amnk = 2n+1
πa2J2

n+3
2

(αk)
(n−m)!
(n+m)!

ˆ a

0

ˆ π

0

ˆ π

−π
F (ρ, θ, φ)Jn+ 1

2
(αkρa ) cosmθPmn (cosφ)ρ

3
2 sinφdθ dφ dρ and

Bmnk = 2n+1
πa2J2

n+3
2

(αk)
(n−m)!
(n+m)!

ˆ a

0

ˆ π

0

ˆ π

−π
F (ρ, θ, φ)Jn+ 1

2
(αkρa ) sinmθPmn (cosφ)ρ

3
2 sinφdθ dφ dρ

Remark. For a special case of heat equation on a sphere, see your textbook.
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