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Preface

This is a preliminary collection of brief notes and handouts for Math 3710. It is written to match the
6th edition of Powers textbook. This is not a replacement for your own course notes! However, if you
print this version and bring it to class, you can add class notes to it (space has been alloted for this) to
make a complete set of course notes. You can obtain this document from the website for this course in
http://faculty.weber.edu/aghoreishi/.


http://faculty.weber.edu/aghoreishi/

Chapter -1

Haﬂdouts (Chapter 0 and Appendix in the Course Textbook)

The chapter zero of your textbook contains a review of ordinary differential equations and in the appendix
you find mathematical references. Read them, as needed. This chapter contains the handouts for the course
which includes textbook corrections and review of both ODE’s and a very large collection of mathematical

references.

-0.9 Handouts



CHAPTER -1. HANDOUTS
A Partial List of Corrections to the
Boundary Value Problems
by David L. Powers, Sixth Edition
Location Original Correction
1. Chapter 1, Misc Exer 7(f) flz)==x flz)=0
2. Chapter 1, Misc Exer 8 flx)=0 flz)==x
3. Sec 2.1, Exer 3 What is g --- What is the replacement of
AAzg ---
4. Sec 3.2, Exer 12 f(z) is as in Eq. (11) f(z) is as in the example in
page 221.
5. Sec 3.3, Exer 6 .. of Exercise 3 as ... .. of Exercise 5 as ....
6. Page 238, Equation (16) dxy, dx
ou? 0%u
7. Sec 3.4, Exer 8 922 922
u(z, t) = f(z) u(z, 0) = f(x)
8. Sec 4.5, Exer 8(e) (... , Exercise 1) (... , Exercise 5(a))
9. Page 309, 2nd paragraph Az (cos(d) — cos(7)) oAx(cos(d) — cos(7y))
0 0
10. Page 311, 3rd equation oAy <8y(x + Az, y,t) ... oAy (8u(a7 + Az, y,t) ...
x x
11.  Page 323, Equation (3) o(r, m) o(r, 0)
12. Page 381, Equation for =—f0)+---=—f0)—--- =—f(0)+---=—f(0)—---
L(f"(t))
1 forO<z<1 1 for0<A<1
13. Page 457, Solution to Exer 3,
Sec 1.9 0 forl<zx 0 forl<A
14. Page 466, Solution to Exer 3, Eq. (6) Eq. (9)
Sec 2.10
15.  Page 471, Solution to Exer 5, wu(0.5a, 1.2a/c) = —0.2aa u(0.5a, 1.2a/c) = aa/2
Sec 3.3
16. Page 490, Solution to Exer 1, i, = mwb W, = m7 /b
Chap 5, Misc Exer
oo o0 o0
17.  Page 491, Solution to Exer 3, Z e Z
Chap 5, Misc Exer n=1 m=1n=1
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Review, Identities, Formulas and Theorems

Let n, m, m, m, k, k, I, p, ¢ and g be nonnegative integers, unless stated otherwise. Let z be a nonnegative
real number, unless stated otherwise.

Trigonometric Identities

1. sinacosb = 3[sin(a + b) +sin(a — b)] 2. sinasinb = L[cos(a — b) — cos(a + b)]

3. cosacosb = [cos(a + b) + cos(a — b))

Hyperbolic Functions

: _ T _ e¥4e ® __ sinhz __ coshzx _ 1
4. sinhx = £=%— 5. coshz = 3 6. tanhz = cochx 7. cothx = soha S sechx = bz

9. cschx = Ssmbz

10. sinh(—z) = —sinhz 11. cosh(—z) = cosha 12. cosh?z —sinh?z =1 13. 1 — tanh®z = sech’x

14. sinh(z £ y) = sinhx coshy £ coshxsinhy 15. cosh(z £+ y) = coshz coshy & sinh z sinh y

16. %(sinh x) =coshz 17. %(cosh x) =sinhz 18. %(tanhx) =sech?z 19. %(coth r) = —csch?zx
20. %(sech xr) = —sechxztanhz 21. %(cseh x) = —cschx coth z
Integrals

22. xsinaxdx:a%sinaaz—%cosax—kC 23. /xcosaxd:z:achosa:c—Fisinax—FC

24. /xQSinaa:dm: a%cosax—}— a%xsinax— %ZL‘QCOSG$+C
2 — 2 & 2 1.2
25. /a: cosafvdm——ag sinar + Sxcosar + Zx sinar + C
eax axr
26. /eaxsinbxdas— ———= (asinbz —bcosbz)+C 27. /eaxcosb:):dx— ———(acosbr+bsinbz) +C
a? + b2 a? + b2

Definite Integrals

o a e a a, fn=m=20
28./ sinTsin"T”daz:{S’ ifn=m#0 29./ cos T cos M dy = ¢ 5§, ifn=m#0
0 ' 0 0

otherwise a .
, otherwise

a a -
irs : (2n—1)mz (2m—1) 7z o X ifn=m
30. For positive integers n and m, /0 COS “5 7 €08 g dr = { 0. otherwise

a a .

NN - 2n—Drz . (2m—1)7z _ bR ifn=m

31. For positive integers n and m, /0 sin ~=_~— sin “——_—dx = { 0. otherwise
2&, fn=m=20

‘. . if n = 0 @ .
32./ smmsmm”dm:{a’ nn m;é 33./ cos P2 cos ™M dyr =< a, fn=m#0
a a 0, otherwise a a .
’ —a 0, otherwise

—a

a
34. / sin%cos%dxzo

—a

a ﬁ 2 Sy —
35. For 0 < a; < g < -+ - zeros of J,(z) andzZO,/ Jo(22D) J, (4= r dr = { 7 Jr1(0m), 1fm—.m
0 , otherwise
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36. For 0 < 1 < B2 < -+ - zeros of Jj(x )rdr =0 and

fm=m
otherwise

(B
) /0 o(F2
er)rdr—{ %Jg(ﬁm%
0,
37. For O < f1 < P2 < --- zeros of J,(x) and z > 0,
By g By g | ST Bm) = T (B) Tes1 (Bm)),
/OJZ( ar) 7 (O )rdr—{ :

2 (nt+m)!
2n+1 (n—m)!”?
, otherwise

fn=n>m

38%*. /ﬂPm(cos ¢) P2 (cos ¢) sin p dp = {

' 2 (n+m)! .o
9%. / P’IZH(S)P* S) ds = 2n+1 (n—m)!? fn=n >m
- 0, otherwise
* For m =0, P;"(s) = Py(s) and EZJ_FZ;: =1.

Definite Double Integrals

ifm=m
otherwise

ifm=mandk=k=0
ifm=mandk=k#0
otherwise

ifm=mandk=Fk+#0

otherwise

m), fm=mandk=k=0

ifm=mandk=k#0

a—b 1 = =
40//sm e sin P2E smqﬂydydfc—{ 1 ifn ?#Oandm 470
0, otherwise
%b, ifn=p#0and m=q¢=0
41//sm os ¥ sin 22 cos TG dy dx = azb, ifn=p#0andm=q#0
0, otherwise
(ab, ifn=m=p=q=0
“ %b, ifn=p#0and m=qg=0
42./0/cosmcosmgycos’mcosqﬂydyd:n— @ ifn=p=0andm=q#0
%b, ifn=p#0and m=qg#0
{ 0, otherwise
Suppose 0 < a1 < ag < --- are zeros of J,(z).
2
a b _ ab‘]2 (am),
43‘/0 0 (7)1 cos K52 cos B50 df drr = 2sz2+1( m);
0,
a rb _ abJ ( )
44./ /J Xm? w)7“5111]%9sink—geal9dr: z+1 ’
0 0 3
a b GQbJZQ—H(O‘
45./0 /_bJ J.(47) 1 cos KX cos k’gededr: %Jfﬂ(am),
0,

2b 12
L) 7 sin kzr@ sin &71¢ 7 T (am),

o [ f e

k10 4 dr = {

o

)

otherwise

ifm=mand k=k#0

otherwise
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2 _(dm)l e m —p>mandk=k=0

2n+1 (n—m)!
47*. / / P (cos ¢) Py (cos ¢) sin ¢ cos “7> k) g kmd k”(’ dfde = 2nl:rl §Z+$§:, ifn=n>mandk=k#0
0, otherwise

b (ngm)! e =_
48%*, / / Pm COS¢ (COS d)) Slngbsln be sin &m¢ kﬂ'e do dd) { 2n+1 (n—m)l’ ifm n-=m and k k ;é 0

, otherwise

QT?_I’H(ZJ:?;, fn=n>mandk=k=0
49%*, / / P (cos ¢) Py (cos ¢) sin ¢ cos “3> k0 o knd ’”9 dfde = 23i1 EZfz%b ifr=n>mandk=k#0
0, otherwise
26 (n+m)! e > 7 —
50%*. / / P™(cos ¢) P(cos ¢) sin ¢ sin 272 sin £76 ’”rg dfdgp = { 2n+l(n—m)l’ itn n zmand k=Fk#0
0, otherwise
* It also holds if k& = m. For m =0, PJ"(s) = Py(s) and Eng: =1.
Definite Triple Integrals
Suppose 0 < a1 < ag < --- are zeros of J,(z).
S1**, / / / J.(422) p Pl(cos (b)Pl (cos ¢) sin ¢ cos L 970 cos qﬂe dfdedp =
2I<;i?1§k+l§‘]+1(o‘m) ifm=m,k=k>landg=¢q=0
o G2 (am), T =m, k=k>landg=q#0
0, otherwise

mLY) p Pl(cos qb)Pl (cos @) sin ¢ sin qge sin qﬂe dfdodp =

a prm b
52**./ / /JZ(O";’))J
o Jo Jo

{ a”b (kH)!Jerl(am), ifm=m,k=k>landg=q#0

2(2k+1) (k—1)!
otherwise

a pm b B
53**. /0 /0 /_sz(a;”p)Jz(a’;p)pP,i(cosgb)Pé(cong)) sinqbcos%cos#d@dqbdp:

;,ﬁl’lEZJrf)J (o), fm=m,k=k>landg=q=0
2k+18§ gJZ“( m), Um=m,k=k>landg=q#0
0, otherwise

H4**, / / / J.(222) ], (“=L) p P} (cos (b)Pl (cos ¢) sin ¢ sin qge sin q7r9 dfdodp =

i

z+1(am) ifm:m,k:kZZandq:q7é0

otherwise

Ow

(k+1)!

and = 1), =

** For | =0, Pl (s

Ordinary Differential Equations
55. First Order Linear ODE: ¢ + f(z)y = g(z)
Integrating Factor: p(z) = ! 7O with € = 0, pw@)y (x) + plx)f(z)y(z) = plx)g(z) =

@)y ()] = p(x)g(x) = pa)y(x) = /u(x)g(:v) dr +C = y(z) = i [ n(x)g(z) dr + ;65

f(t)dt

Or, integrating factor: u(x) = ¢ and y(z) = nlm)/ w(t)g(t) dt + Zﬁg};))
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d
56. First Order Separable ODE: & _ M

dz  h(y)
Implicit Solution: /h(y) dy = /g(m) dr = H(y) = G(z) + C with H =hand G' =¢

y T
Or, / h(t) dt = / o(t) dt
y(zo) zo

M N
57. Exact ODE: M (z, y) + N(z, y)d—y = 0 is called exact if oM = oN
dx Y or
F F
Implicit Solution: F(z, y) = C where or _ M and or _ N
Ox oy

Start with %—5 =M or %—5 = N integrate with respect to x or y, respectively, then differentiate
with respect to the other variable, and use the other equation to find the remaining function
of y or .

58. Second Order Linear ODE with Constant Coefficients: ay” + by’ +cy =0
Characteristic Equation: ar? + br + ¢ = 0 with solutions r; and ry
c1e"* 4 coe™, if 1 and r9 are real-valued and unequal
y(x) = 1% + cpze?, if ri =7y
c1e™ cos px + coe™ sin px, if i, o = X+ pi
If ri, 7o = 47, then y(z) = c1e™"™ 4 c9e”™ or y(z) = ¢1 coshrz + cg sinhrzx or
y(z) = ¢y coshr(x — xg) + cosinhr(x — x) or
y(x) = ¢y sinhr(x — xg) + cosinhra or y(x) = ¢ coshr(z — xg) + c2 coshra
59. Second Order Linear Nonhomogeneous ODE: y” + p(z)y’ + q(x)y = g(x)
General Solution: y(x) = yn(z) + yp(x) where the homogeneous solution yp(z) = ci1y1(x) + coy2(x)
is the general solution to the homogeneous equation y” + p(z)y’ + q(z)y = 0, while y; and ys are
two linearly independent solutions of the same homogeneous equation, and the particular solution

yp(z) is a solution to the nonhomogeneous equation y” + p(x)y’ + q(z)y = g(z).

Method of Variation of Parameters: y,(x) = ui(x)yi(x) + ua(x)yz(x) where v} (z) = %&%@ ,
ub(z) = yl(v‘iﬁi)(igm) and the Wronskian W (x) = yi(z)y)(z) — y2(x)y) ().
(@) = (o) [ AR o+ yo(a) 2222 4o on
i) = o) | R8O e+ o) | 0 e
X0 xo
60. Cauchy-Euler Equation: z2y” + azy’ + By =0
Indicial Equation: p(p — 1) + ap + 8 = 0 with solutions p; and po
c1|zPr + col|x|P2, if p1 and po are real-valued and unequal

y(z) = (c1 + coIn|z|)|z[Pr, if p1 = po
2 fer cos(una]) + o sin(eln fal)], iF pa, pp = A=

2 d*¢ dp
61. 2°— +2— —n°¢® = 0 and ¢(0) bounded — ¢(z) =z" forn=0,1,---
dx? dx
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Rayleigh Quotients

[ [s(sc)(%i) +a(@)d?(@)) d

; —s()o(x) 2|

62. . [s(m) %} —q(x)p+ Ap(x)p =0= A=

J e

—§1§¢v¢-ﬁds+/ IVo[2dA

C R
é/gfﬂ dA

Lagrange’s Identity and Green’s Formula

63. V2o +Ap=0=—= \ =

64. uL(v) — vL(u) = % {s(rc) (u(:c);lz — v(x)ﬁﬂ

65. [ (o)~ vr(]ds = s(o) [ue) 57— o) 52|

Green’s Identities

//UVQUdA: %uV%ﬁds—/ Vu-VudA
R c R

67. //(UVQU —oV2u)dA = yg(qu —oVu) - nds

R C
///(UVQU —oV2u)dV = # (uVv —vVu) - ndS
Q o0

Eigenvalue Problems

66.

(@)

68.

Qo

2
69. %:—m, $(0) =0 and ¢(a) =0 = A = (25)2 | ¢(x) =sin "2 forn=1,2,---
d*¢ ¢
=
d*¢
@:_)\4) )\:(MQ
71. 4 ¢(—a) = ¢(a) = “ ., forn=0,1,--

o, d¢ P(r) =

d d
70. d), () Oandﬁ(a)zOz)\:(%)Q,¢(:c):cos%forn:0,1,-~

nmr : n
cos "7 and sin P

[(271 1) ]

72. #(0) = = form=1,2,---

73. @(0): - form=1,2,---
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2
x2ili—¢ Zﬁ—i-()\x —n?)¢p =0 A= (2
74. (0) bounded = o(2) :aJn(aZ$) for 0 < oy < g < -+ zeros of Jy, ()
¢(a) =
Al ] M2 —n(n 4 D)) =0 A= ()
75. (0) ounded — f(p) - p_ijn_’_%(%)
fla) = for0<a1<a2<-~~zerosofJn+%(p)
4 2
76. ¢ ¢(0) bounded — n>0, A= (22)2) ¢(x) = J,(2n2)
@(a):O for 0 < 81 < By < -+ zeros of J/ (x)
\ dz
d . m2
T d¢[sm¢ (;5:| <_Msm¢_sin¢>g(¢):0 = p=-nin+l forn=m,m+1,---
9(0) and g(7) bounded 9(¢) = Py (cos ¢)
d*¢ do m? _
78*. (1-—s )W_Qdi—i_( H= 1—52>¢:0 — M= n(n forn=m,m+1,---
¢(—1) and ¢(1) bounded ¢(s) = P'(s)

*For m =0, P"(s) = Py(s).

02 02
8£+8yf:—)\¢($7?!) — (nm)2y (mm)2
. a — —1.92....
79 (0, y) = d(a, y) = 0 = ¢($):s 1 252 i T forn=1,2, and m , 2,
o(x, 0) = p(x, ) =0
0? 0?
87;24‘% —Ap(z, y) , )
\ = (nr)2 4 (mn
80. 8<Z>( y) = 8(z)(7y):() - G+ ) forn=0,1,---andm=0,1,---
%0)%b)0 Ha) = cos Bt con BE
—\X = —\X =
L ay b ay )
¢ 0%
5+ o5 = —Ad(z, )
ox 8y )\:(M)Q_’_(M)Q
81. (0, y) = ¢(a, y) =0 — a b v forn=1,2,---andm=0,1,---
8¢( ) 8¢( ) ¢(x) = sin 7= cos T
—(x,0) = =—(z,b) =0
L ay ) ay Y
¢  0%¢
W_‘_W_ )\¢($,y) )= nm\2 mm\2
82. ¢ 99, 00 o = = (%) +(T)m forn=0,1,---andm=1,2,-
8?( Y) = Oz - (a, ) ¢(x) = cos MIZ sin =Y
| 6(z, 0) = o(x, b) =
( 82 82
) )
a.f ay )\:(M)2+[(2m 1)#]2
83. ¢(07y) Qs( ’y):(] = ¢( )_a nwx 2b(2m_1)ﬂy forn:1,2,~- andm:1727"'
acb( 0) = b, b) = 0 r) = sin #7F cos %
— I\ = =
ay 9 )

Two-Dimensional Eigenvalue Problems
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(¢ | D¢
“ @ 673/2 = —)\Qs(l" y) N\ = (771-)2 + [(2m2—bl)7r]2 . L . L
. ¢<07 y) _ (b(a, y) -0 — ¢($) _sin ? sin (2m;b1)ﬂ_y orn=1,4,---anam=1, 4,---
é(x, 0) = Go(x, ) =0
0? 0?
O 00— ()
or oy A= (nm)2 [(Qm—1)7r]2
85 ¢ ¢ =)+ 2b . _
. —(0,y)==—(a,y) =0 = forn=0,1,--- andm=1,2,---
gé Oz ¢(x) = cos "I cos (2m;b1)7ry
@(x’ 0) = QZ)(CC’ b) =0
&F¢ ¢
922 0 —Ad(z, y)
X Yy A\ = (m)Q + [(2m—1)7r]2
8d> 8(]5 T \a 2b . B
86. —(0,y)="(a,y) =0 = forn=0,1,---andm=1,2,---
ox P ox ¢(.’E) — cos PTT gin (ngbl)wy
o(x, 0) = az)(x, b) =0 ‘
»Po ¢
922 " o2 = -\o(z, y)
8¢ y )\ — [(2”;1)#]2 + [(2m2;1)ﬂ]2 f d
87 7 - — — a o =1,2,--- a =1,2,---
O (0, ) af;:(aw y) =0 é(z) = cos (Qn;;)ﬂx sin (2m;b1)7ry rn nam
,0)0=—=—"(x,b) =0
| 42,0 = 5. b
0? 0?
004+ 90— i, v)
03; ay )\ — [(211—1)71’]2 + [(Qm—l)W]Q
88. %(an):qb(a?y):o - 2 % forn:lvzv'”andm:1727”'
or ¢(x) — oS 2n—1)7x cos (2m—1)my
8q§< 0) = é(x, b) = 0 2a 20
5\, = ) -
dy
0? 0?
004+ 90— rile, v)
(933 ay A = [(27),71)#]2 + [(271@71)71’]2
89. ¢(07y):%(avy):0 = . » fOl"nzl,Q,"'andmzl,Qa"'
g{g gb(x) — sin (2n;§)7r:1} sin (2m;b1)7ry

Supporting Theorems

90. Green’s Theorem (vector version)
Let R be a region in R bounded by a piecewise-smooth, simple closed curve C with

counterclockwise orientation. Let F' be a vector field whose components have continuous

partial derivatives on an open region containing R, then //V CFdA = ;ﬁﬁ -nds.
R C

91. Divergence Theorem
Let Q be a simple solid region in R3 and let 02 be its boundary with the outward orientation. Let

F be a vector field whose components have continuous partial derivatives on an open region
containing €2, then ///V LFdV = #ﬁ -ndS'.
Q a0

b
92. If function f is continuous, f(z) # 0 and f(z) > 0 for a < z < b, then / f(z)dx > 0.
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b
93. For a continuous nonnegative function f if / f(x)dx =0, then f(z)=0fora <z <b.
a

94. Uniform Convergence Definition
The sequence of functions f, : D — R, n=1, 2,---, is said to converge uniformly to the
function f: D — R if for every € > 0, there is a natural number N such that for all x € D we
have |f,(x) — f(x)] < € for all n > N.

95. Weierstrass M Test (A test for uniform convergence.)

Suppose for each function f, : D — R, n=1, 2,---, there exists a constant M,, with

o) o
| fn(x)| < M, for all z € D, and ZMn converges. Then Z fn converges uniformly.

n=1 n=1
96. Interchanging Limit and Integral
Suppose functions f, : [a, b — R, n =1, 2,--- | are continuous and converge uniformly to a
b b
function f : [a, b — R. Then lim [/ fn(x) dm} :/ [ hm fn(z dm —/ f(z
n—oo a a
97. Interchanging Integral and Summation
o
Suppose functions f, : [a, )] — R, n=1, 2,--- | are continuous, and Z fn converges uniformly.
n=1
b [ oo 00 b
Then / [an(x)] dx = Z [/ f(zx) da:].
a n=1 n=1 a
98. Interchanging Differentiation and Summation
Suppose functions f,, n =1, 2,---, are continuously differentiable, Z fn converges pointwise,
n=1

n=1 n=1

and Z 1} converges uniformly. Then i [Z fn(x ] = Z [di fn(x)].

99. Leibniz Integral Rule (Interchanging differentiation and integration with respect to different variables.)

0
Suppose functions f(z, y) and ——(z, y) are continuous on [a, b] X [¢, d]. Then

Oy

2/  fe. ) | - | b 1) de

Fourier Series

100. If f(z) = A0+ZA cos—for0<:c<a then Ay = /f )dz and A, = /f ) cos “7E dx

n=1
101. If f(x ZB sin ¥ for 0 < x < a, then Bn— f ) sin 7% dx;
n=1 a
a
102. If f(= )—ao—i—Zancos——i—Zb sin % for —a <z<a, thenao—l/ f(z)dz,
a a
n=1 = —a

f(m) cos "I dz and b, = 1 f(m) sin 7% dx

103. If f(z ZA COS ) for 0 < z < a, then A, 3/ f(m)cos%dx
0
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104. If f(z

ZB sm ) for 0 < z < a, then B, = / f(x)sin (Qn Um dx

Generalized Fourier Series

105. Suppose 0 < f;1 < 62 < - are zeros of Jj(x).

If f(r

Am

It f(r

Am

—ag—i—ZamJo ) for 0 < r < a, then ag = /f ) rdr and
/f )Jol /f Jo(ZmT ) dr
2
/JO( “)r drr a*J (Bm)
0
106. Suppose 0 < 61 < fg < --- are zeros of J.(x) and z > 0.
Zamz ) for 0 < r < a, then
/ ad / i
/JQ( )Td?“ —Ja 1(5 ) z+1(/3m)]
0

107. If £(¢

108. If f(o

109. If f(¢)

ap =

Zan (cos¢) for 0 < ¢ < mand m > 0, then

/ f(&) P (cos ¢) sin ¢ dop

= e / F(@) Py (cos 9) sin 6 do
/ [P (cos ¢)]? sin ¢ do

Zan (cos¢) for 0 < ¢ < 7, then

/ f(@)Py,(cos @) sin ¢ do

- 2”+1/ f(¢)Py(cos @) sin ¢ dop
/ [P, (cos ¢)]?sin ¢ d¢
0
= Zakpgk(cos ¢) for 0 < ¢ < 5, then
=0

k
/Qf(¢)P2k (cos @) sin ¢ do x
0 - = (4k + 1)/0 f(&)Pag(cos @) sin ¢ do

/0 [Par(cos ¢)]? sin ¢ d¢p

11
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o0

110. If f(¢) = Zakng_l(cos ¢) for 0 < ¢ < 5, then
k=1

Ef(¢)P2k.,1(cos @) sin ¢ do z
a = = = (4k — 1)/0 f(¢)Pag—1(cos ¢) sin ¢ dop

/0 ’ [Pak—1(cos ¢)]? sin ¢ d¢p

Double Fourier Series

111. If f(z, y) Z Z Bym sm—sm Y for (z,y) € (0, a) x (0, b), then
n=1lm

a b
By = = / f(z, y)sin T sin "5 dy dx
0 0

112. If f(z, y) ZZAnmcos—co mr

n=0m=0

a b a b
Aoozalb/ [t wdyie, dw =3 [ [ 1o gy cos 2= ayaa.

/ /fx y) cos "5 dy dz and Ay, = ab/ /fx y) cos 2L cos 7Y dy da

113. If f(z, y) ZZCnmsm—c

n=1m=0

Y for (z,y) € (0, a) x (0, b), then

Y for (x,y) € (0, a) x (0, b), then

n _ab/ /fxyslnnmdyd:vananm_ab/ /foySlnmCOSmﬂ'ydydq;

114. If f(z, y) Z Z Crm sm cos Ty + Z Z D, sin m;rx cos n%bry for

n=0m=1 n=1m=1

a b
xz,y) € (0, a) x —b,b,theanm:i fa:,y sin ™2 dy dax
ab a

= / / f(z, y) sin ™ cos 7 dy dx and Dnm—ab/ / f(@, y) sin "7 sin 7 dy d

(2n — 1)z (2m — 1)y
115. If f(z, y) = nZ::lmZ::lCnm cos 5 cos 57 for (z, y) € (0, a) x (0, b), then
a b
Chm = % f(x, y)cos (Qngi)” coS (2m 1)7”/ dy dx
0o Jo
116. If f(z, y) = i i Crum sin % cos (2m = Dy for (z, y) € (0, a) x (0, b), then
* y v oo nm a 2b ) y Y 9 )
/ /f x, y) sin 2ZZ (2m;b1)7ry dy dx
117. If f(=, Z Z Crum €OS 2 ¢ (Qm_ Dy for (z, y) € (0, a) x (0, b), then
y = Om 1 nm a 2b ) y ) Y Y

m—ab/ /fm Y) cos = l)Wyalyalw and Cnm_ab/ /fgg y) cos BIL g (2m— Dwdydw
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[e.e] [ee]
2m —1
118. If f(z, y) Z Z 'om, SIN Zw sin( mn 5 )™y for (z, y) € (0, a) x (0, b), then

n= —

b
Crm = 2= / f(z, y) sin 2% sin (2m;b1)7ry dy dx
0o Jo

119. If f(=x, y) Z Z Chym €Os ;ra: in (2m ;bl)wy for (z, y) € (0, a) x (0, b), then

n=0m=1

a rb a rb
C'Om:fb//f(m,y)sin@m;bl)wdydxananm:;b/o /Of(x,y)cos’?sin%bl)m’dydx

(2n—1 2m —1
120. If f(z, y) ZZCnmsin n ) in( m2b )™y for (z, y) € (0, a) x (0, b), then

n=1m=1
“rh 2n—1 2m—1
Com = ;b/ / f(z, y) sin ¢ o )T i o )™ dy da
0 0

Generalized Double Fourier Series

Suppose 0 < ag < g < - -+ are zeros of J,(x).

121. If f(r, 6) ZZAka sl%rgfor (r, 8) € (0, a) x (0, b), then
k=0m=1

a rb
_ 2
AmO — a2sz2+1(am)/0 /0 f(ra 9)J

(“m%)r df dr and

Ak = T2 1(am)/ /f r, 0) cos B2 J(9mT)y df dr
122. 1f f(r, 0) ZZBMJ sin " for (r, 0) € (0, a) x (0, b), then
k=1m=1 b , , o
Bk = QbJ / /f r, 6 smk“eJ( ")r d dr
a 241 Oé'm
N k6
123. If f(r, 0) = ZZAMJ TCSL—FZZBka 1Tf0r
k=0m=1 k=1m=1
(r, ) € (0, a) x (=b, b), then A9 = a%JZQH o) / / f(r, 0)J.(*=5)rdf dr,
2 @b kw6
Ak = ‘121’Jz2+1(0‘m)/0 /_bf(r, 0) cos 5= J. (“=T)r df dr and
a rb
_ 2 s kmwl amT
Bk = o /0 / (e, 0)sn S50 (25 d9
124*. If f(0 Z Z A Pl (cos ¢) cos— for (6, ¢) € (0, b) x (0, 7), then
k=0n=m
Ao = (cos @) sin ¢ df d¢ and
Apg = 2”“ ) cos 2% P (cos ¢) sin ¢ d6) d

* It also holds if & = m. For m = 0, P™(s) = P,(s) and EZ+2;: = 1.

13
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14
125%. If f(60 Z Z App Pl (cos ¢) sm— for (0, ¢) € (0, b) x (0, 7), then
k=0 n=m
By, = 2F (n o / / £(0, ¢)sin 22 P™ (cos ¢) sin ¢ df do
126*. If f(0 Z Z Ap Pl (cos ¢) cos— + Z Z B P (cos ¢) sm— for
k=0n=m k=1n=m

(0, ¢) € (—b, b) x

A = 2n+1

n

n+m

Suppose 0 < a1 < g < - -+

127, 1t f(p, 0, )

then A,k =

2k+1

(0, ), then App =

2”“ (cos@)singpdf de,

/ / f(0, ¢)cos #Pff(cos @) sin ¢ df d¢ and

By = 234 (n m)'/ / f(0, ¢)sin &

* Tt also holds if K =m. For m =0, P (s) =

kx6 pm (cos ¢) sin ¢ d6) d¢

n—m)!
P,(s) and En+m§, =1.

Generalized Triple Fourier Series

are zeros of J,(x).

9P P (cos ) cos ? for (p, 6, 6) € (0, ) x (0, b) x (0, m),

a2b(122]i:(lam // /fp, , )pPk(cosqﬁ)squdeqﬁd,o and

Amkq a2b Jz

128%*_If f(p, 0, ¢) =

then B,y =

120%% If f(p, 0, ¢) =

for (p, 0, ¢)

o0

S5 B

q=1 k=l m=1

2(2k+1 (k—1)!
st [ / 0.0, )7

[o e 2Ne o lNe o]

D> > Auig:

q=0 k=l m=1

oo o0 0

k—1)!
S [ o

L) p Pl (cos ¢) sin ¢ cos q”(’ df de dp

(ZmP Pk(cosqb)smTefor (p, 0, ¢) € (0, a) % (0, b) x (0, 7),

)pP,i (cos ¢) sin ¢ sin # df do dp

m 76
a '0 )P} (cos ¢) cos QT +

Z Z Z Binkq= amp )P} (cos ¢) sin %

q=1 k=l m=1

€ (0, ) (bb) (0, ), then

2k+1

Aka 2a? bJ2+1 am)

A 2k+1
mkq = 42572 +1(am)

** For | =0, Pl(s) =

-

B’mkq aQbJ2

Py (s )and (=Dl

=)

/ / / F(p, 9, 6)J-(2)pPl(cos 6) sin ¢ df do dp,

f (p, 0, ¢)J. )pPk (cos ¢) sin ¢ cos 1% 979 46 d¢ dp and

f(p, 0, ¢

m2) p Pl (cos ¢) sin ¢ sin qﬁe df de¢ dp
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Suppose 0 < a1 < ag < --- are zeros of J,(z).
130*. If f(p, 0, Z Z Ankg p_5J ( ZZ )P} (cos ¢) cos = — +

q=0 k=l m=1
oo o0 XX

S5 Bukgp 5.3 (220 Picos ) sin 77
k=l

b

q=1 m=1

for (p, 0, @) € (0, a) x (—=b ), then

3 .
Anio = it b / / / £(p. 0, )T, 1 (252) Pl(cos ) sin s b d dp,
zt+5

Amkq - a2bJ22k—;1(am) Ei-i-g:/ / / f(pa 0, ¢)Jz+%(a7;p
Bmkq: azbfzk—;lam / / / f P 9 ¢ z+ ( le

* For | =0, Pl(s) = Pk() ( ) =1

)p% P! (cos ¢) sin ¢ sin ? dode dp

15

)p%P,i (cos ¢) sin ¢ cos ﬂbg df d¢ dp and



Chapter 0

Iﬂt rOdUCtiOH (Not corresponding to the course textbook)

Definitions: 1. A partial differential equation (PDE) is an equation

F(u7 Ugy Uy, = 5 Uy, Uzy, ) :G({L', Y, )
involving independent variables x, y, ---, a function u of these variables and the partial derivatives
Uz, Uy, *** 5 Uz, Ugy, -, of the function. Also, functions of independent variables may be used as co-

efficients for function u and its partial derivatives.
2. The order of a PDE is the order of the partial derivative of highest order appearing in the equation.

3. A function u(zx, y, ---) is called a solution of the PDE if the PDE becomes an identity in the indepen-
dent variables when u and its partial derivatives are substituted in the PDE.

4. A PDE is called homogeneous if G = 0, (no independent variable appears by itself).

5. A PDE is called linear if for all constants « and 8 and functions u and v we have
F(’UJ, Wy, wya sy Weg, /wl‘ya ) :aF(u, Uy, Uy7 R ) uCCy7 )+5F(U7 Vg, Uy’ sy Uz ny) )

where w = au + Pv.

Examples: 1. %—;‘ — u% = 0 is a nonlinear homogeneous first-order PDE.

For nonlinearity, show F(au + av) # afF'(u) + SF(v) for particular values of «, 8 and functions u and v,
where F(u) = % - “%- Classroom discussion!

2. Ugy + uyy = 6z is a linear nonhomogeneous second-order PDE and u(zx, y) = 3 + 22 — 3% and
u(r, y) = 2% + e® cosy are two solutions of it.
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Classroom discussion!

3. Upy = %ut is a homogeneous linear PDE of order 2.

Here F(u) = ugy — %ut. Classroom discussion!

Examples: 1. Find the solution u(zx, y) of % —ysinx = 0.

For how to solve a [separable ODE|see the Review, Identities, Formulas and TheoremsHandout. Classroom
discussion!

2. Find the solution u(z, y) of uz, — u = 0 which satisfies the auxiliary conditions; u(0, y) = y + 6 and
uz(0, y) = y.

For how to solve a [2nd order linear ODE with constant coefficients| see the Review, Identities, Formulas
and TheoremsHandout. Classroom discussion!
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Exercises: 1. In example (1) above, have we found all of the solutions?

2. Find the solution u(zx, y, z) of u, —ysinz = 0.

3. Find the solution u(z, y) of wugy, + u, uy = 0. Hint: Notice that it is an exact ODE with respect to y
derivative whose solution leads to a separable equation. For how to solve an see the Review,
Identities, Formulas and TheoremsHandout.

Sometimes we can find infinitely many solutions. For example consider u, + u, = 0. Functions u,(z, y) =
(z—y)",n =0, 1, - - -, satisfy the PDE, so perhaps their “infinite linear combination” u(z, y) = > " chtin(z, y)
will also be a solution of this PDE. Notice that if we take ¢, = 2, then u(z, y) = Y00, % =Y
which is a solution of our PDE.

The typical problem is to find a solution of a PDE which satisfies certain auxiliary conditions, for example;

Ugpy = %ut, 0<z<a,t>0 (Heat Equation)

U(O,t):TO’t>0 .
u(a, t) =T, t>0 } Boundary Conditions

u(z, 0) = f(x), 0 <z < a Initial Condition

Auxiliary
Conditions

Our main solution technique will be the method of separation of variables, also called product method and
Fourier’s method.

Example. Solve u; — uu, = 0 by separation of variables.

Assume u(z, t) = ¢(z)h(t), plug into the PDE and simplify to get ¢'(x) = % Since the left hand side
(LHS) is a function of x and RHS is a function of ¢, this equality will hold o

constant, say \. Solve ¢'(z) = A and w = X and plug back in the function u. Classroom discussion!
12 (%)

nly if they are equal to a

Exercise. Solve u; = u,; by the method of separation of variables. Hint: Consider the cases A > 0, A =0
and A < 0.



Chapter 1

F()urler SerleS (Fourier Series and Integrals in the course textbook)

1.1 Periodic Functions and Fourier Series

Definition. A function f is said to be periodic with positive period p if

1. f(x) has been defined for all z, and

2. f(x+p) = f(x) for all .

For a periodic function f with period p, it is easy to show that f(z—np) = f(z) = f(z+np) forn =0, 1, - --
and thus a periodic function, defined as above, has many periods! Classroom discussion!

Examples: 1. PUT GRAPH HERE!
2. PUT GRAPH HERE!
2mx

3. Functions sinx and cosx are 2m-periodic. Functions sin &% v

of the function sin 5% is %2 = g.
3

and cos 2”7”” have period p and the period

Let f be a 2a-periodic function (of period 2a). In this chapter we want to find constants ag, an, bp,
n =1, 2, --- such that

—a0+Z(ancos—+b sin@>.

a

Orthogonatlity Relations

Assume m and n are nonnegative integers, unless stated otherwise.

sinnx dx = 0 for all n

|
3

/ cosnxdx:{ 0, n#0

o 2r, n=20

/ sin nx cosmx dx = 0 for all n and m
e

/ sinnxsinmxd:c:{ 0, n#m

o T, n=m

m 0, n;ém
/cosnxcosmxdwz T, n=m#0

- 2r, n=m=20
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See [Review, Identities, Formulas and Theorems| These are easy to check, (do it). We will need the follow-
ing identities. See |[Review, Identities, Formulas and Theorems|

sinacosb = %(sin(a + b) + sin(a — b))
cosacosb = %(cos(a + b) + cos(a — b))
sinasinb = % (cos(a — b) — cos(a + b))

We will use the first identity to prove the third orthogonality relation above.

/ sin nz cosmz dr = / (4 sin(n + m)x + L sin(n — m)x) de = 0, using the first orthogonality relation.

—r —T

This can be treated in a more general form.

Definitions: 1. Function f(z) is an even function if f(—xz) = f(x) or equivalently its graph is symmetric
about y-axis.

2. Function f(x) is an odd function if f(—xz) = —f(z) or equivalently its graph is symmetric about the
origin.

Then we have

/ (even function) dx = 2 / (even function) dx and
0

—a

/ (odd function) dz =0

cosz is an even function, while sinz is an odd function. We can also think of even as “4+” and odd as “-”
in the following sense: even x odd = odd, odd x odd = even, even X even = even, even + even = even and
odd + odd = odd.

Each function can be written as the sum of an even function and an odd function.

Fl) = (@) + F(=o) + 5(f(&) — f(=a)

even odd

. . . . . . s .
Therefore since sin nx is odd and cosmz is even, their product is odd and so f_w sinnx cosmz dx = 0.

Now suppose [ is a 2m-periodic function and that f(z) = ag+Y_ .. (an cosnz + b, sinnz). By interchang-
ing the order of integration and infinite sum, we can show the following.

B 1 us B 0’ f odd
ag = % _ﬂf(x) dx = { %foﬂ f(x) dx, f even

For any fixed integer value m =1, 2, - - -,

" [0, f odd
= 7ﬂf(:1:) cosmi de = { %fgr f(z)cosmadz, feven ’ and
1 [T . 2 [ f(x)sinmadr, f odd
— — T JO ’
by, = - _Wf(x) sin mz dz { 0 F even

Classroom discussion!
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Definition. Fourier series (F.S.) of 2m-periodic function f(z) is defined as

flx) ~ag+ Z (ap, cos nx + by, sinnw)

n=1
where ag = 5 [7_f(z)dz, ap =1 [T f(z)cosnzdx and b, =1 [T f(z)sinnade forn=1,2, -

Question: Does this series actually represent function f(x)?

Example. Find F.S. of f(z) = |z| for —7 < x < 7 and f(z + 27) = f(x).

f(z) is an even function with period 27 and the graph as shown. PUT THE GRAPH HERE.

So, bp=0and ag = 5= [ f(z)de == 21 [ fa)de =" =F, a, =21 [T f(z)cosnzdx =2 [] f(z)cosnadr =
4

92 rm . . 2 . ——=, N Odd . . . -

2 [fxcosnadr = - = —5(cosnm) — 1 = { O,M n oven ' USN8 integration-by-parts. Or, ag, = 0

and ag,_1 = —ﬁ form=1,2,---. Thus

s
PRy,

I 1
f(x) 5 7Tnz_:l(QTL_l)Q(:os(Qn—l)ac.

Classroom discussion!
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1.2 Arbitrary Period and Half-Range Expansions

Definition. Let f be a periodic function of period 2a, then its F.S. is

(0. 0]
nwx nrx
~ B — b i 7>
f(z) ~ap +n§1 (ancos . + b, sin .

where ag = o [, fla)de, an = éffa f(x) cos "ZE dx and b, = %ffaf(:c) sin M dy forn=1,2, ---.
Exercise. As we did for the 27-periodic functions, derive above equations for ag, ay,, b,, n =1, 2, ---.

What if f is defined only on a finite interval, say (—a, a)? For example, let’s find the F.S. of f(z) =

1, 0<zx<a
{ -1, —a<x<0
we extend f to all of R in such a way that it will have period 2a. Call this new function f. F.S. of f on
(—a, a) is the F.S. of f on (—a, a).

. f(z) is not defined on all of the R (real numbers), so to use the above formulas,

PUT GRAPH HERE

Note. More often than not we simply call this new function f again.

Since f is an odd function, ap = a, = 0 and b, = 2 [/ f(z)sin“TLdx = .-+ = —2(cosnT — 1) =
0, neven 4 > 4 . (2n— D7z
{ G poqq O =O0andbenoy = e n =12 Thusf(x)wgi @G- .

Classroom discussion!

If function f(x) is not defined on the interval (—a, a), then we make either an odd or an even extension of
ftoall of R.

Examples: Make even and odd extensions of the following functions to the entire real-number line.
1. f(z)=2,0<2<12. f(z)=sinz,0<z<73. flz)=(z—-2)%2<2<3

PUT ALL GRAPHS HERE

These extensions are not unique, for example, for example 3 we could use the following extensions.

PUT GRAPHS HERE
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Since in either case evaluation of a’s and b’s will only involve integration on (0, a), we call the F.S. for
these cases Half-Range Expansion.

Definitions: Let f be a function defined on (0, a).
1. The odd extension of f to (—a, a) is fo(z) = { i(:c),_
The F. sine series of f is the F. series of f,.

2. The even extension of f to (—a, a) is fe(z) = {

The F. cosine series of f is the F. series of f..

Examples: Consider the function f, in example 2 above.

1. Find the F. cosine series of f.
Using fe, the even extension of f to all of R, we have

b, =0
s
a0:22ﬂ/0 sinxdx:~--:%
- 0, n=1
an:i/ Sinx Cosnxdx:...: O, n>1andn0dd e
0 4 n > 1 and n even

A2 =T)’

— -4 — —
a?n—maa2n—l—07n_1727"'

[e.e]

2 4
f(x) ~ W_T;MCOS2TL$

Classroom discussion!

2. Find the F. sine series of f.

The odd extension of f to all of R is sinz itself. So, F. sine series of f should be f(z) ~ sinz.
. oo 4(=1) -1
Question. At x = §, sinz =1and > 27, ﬁ cos2nx =y 7, ﬁ. Is 2 - 4% % =17
2x

Exercise. Find the F. sine series of f(z) = { ?_’ 2

a’

0<l‘§%
s<zr<a

. 8 co Sin'F . onxz _ 8 co (=Dt L (@2n-1)7x
Answer: f(z) ~ 5 0 —o2sintE = 5 Y700 Ty S~

a
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Definitions: Let function f be defined on (0, a).

oo
nTT 2 [ nTT
1. The Fourier sine series of f is Z by, sin "% Where by, = — / f(z)sin T .
aJjo
=1
' > nmwx 1 [
2. The Fourier cosine series of f is ag + Z ap, COS where ap = — / f(x) dx and
a a 0
n=1
2 a
ap, = / f(z) cos DTE e,
a Jo a

1.3 Convergence of Fourier Series

Definition. Let f(x) be a function and zp € R. We say that ILm f(z) exists if
T—T0

1. left limit exists <= f(z,) = lim f(z) = lim f(xo+ h) = lim f(xo + h) exits,
. h—0— h—0

x—)xo
h<0
2. right limit exists < f(zd) = lim f(z) = lim f(zo+ h) = lim f(zo + h) exits, and
a:—>:(:ar h—0% };LA)([))
>

3. the above two limits are equal <= f(z) = f(z¢).

Then lim f(z) = f(zg) = f(zg).

T—rT0

Definition. Function f(x) is continuous at xq if

1. f(xo) exits,

2y S exits and b plag) = f(af) = flao)
3. f(zo) = lim f(2).

Definition. A function is continuous (everywhere) if it is continuous at each point.

Types of Discontinuity at z¢- 1. Removable discontinuity; f(zg) = f(zg) # f(x0), (f(xo may not be
defined.)
2. Jump discontinuity; f(zy) # f(zg), but both exist. 3. “Bad” discontinuity; f(zg), f(z¢) or both fail
to exist.

Examples: 1. 2.
PUT GRAPHS HERE

PUT GRAPHS HERE

In the case of removable discontinuity at g, if we redefine our function at zg to be f(xo) = limg_5, f(x),
then this new function is continuous at zg, hence the terminology “removable discontinuity”.
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Definition. A function is piecewise continuous on a finite interval (a, b), if it is bounded and continuous
on (a, b), except possibly for a finite number of jumps and removable discontinuities.

Definition. A function is piecewise continuous if it is piecewise continuous on every finite interval.
Remark. Another name for piecewise continuous is piecewise continuous.

Examples: Addition to the parts of the last example.
1. Function f is not piecewise continuous on (0, 2x¢), so it is not piecewise continuous.
4. Function f is piecewise continuous on each finite interval, so it is not piecewise continuous.

If a function defined on a finite interval is piecewise continuous, then its periodic (odd or even) extension
is also piecewise continuous, for example consider

PUT GRAPHS HERE

Definition. A function f is piecewise smooth if

1. f is piecewise continuous,

2. f'(z) exists for every x, except perhaps at a finite number of points, and
3. f'(x) is piecewise continuous.

1
Examples: 1. f(z) =23, -1 <z <L
f is continuous on , f’ is not continuous on and therefore f is not piecewise smooth. Classroom discussion!

2. f(z)=|z|, - 1<z <1
f is continuous, although f’(0) does not exist f’ is piecewise continuous and therefore f is piecewise smooth.
Classroom discussion!

Theorem (Convergence Theorem, Function Hypotheses). If f(x) is piecewise smooth and periodic with
period 2a, then at each point x the F.S. corresponding to f converges and

ag + Z <an cosnaﬁ + by, sin %) = % (f(x_) + f(ﬁ')) .

n=1

Remark. If f is continuous at x, then 3(f(z7) + f(z™)) = f(x).

= 4(-1)"
Example. Show that Zl m
Apply the above theorem to the F. cosine series of f(x) = sinz, 0 < < 7 and then plug in z = 7.
Classroom discussion!

=2—.



CHAPTER 1. FOURIER SERIES 27

Example. The graph of periodic function f is shown below. Draw the graph of its F. series.
PUT GRAPH HERE

Classroom discussion!

Remark. The above examples show the power of the Convergence Theorem.

[ee]
-n" 1
Exercises: 1. Use the F.S. of f(x) = |sinz| to show that ; 4(712 2 1=35" %

0 (_1)n+1 7.[.2 e 1 71,2
2. Use the F. cosine series of f(x) = 2%, 0 < x < 7, to show that E:l T and 2:1 2=

© 1 S

3. Use the F. cosi ies of =zt 0<z< d » — = — toshow that » — = _—.

se the F. cosine series of f(z) =z, xr <, an ;”2 o toshow tha ;Wl 90

-1, —a<z<0

3, 0<z<a Find its F. series graphically.

4. Consider the 2a-periodic function f with f(x) = {

(Do not compute its F.S. coefficients.)

It is also useful to state convergence theorems for the F. series when f is defined on (—a, a) and both F.
sine and cosine series when f is defined on (0,a). We need to find the conditions for which the desired
extension of f meets the hypotheses of the Convergence Theorem. We must also pay special attention to
the endpoints.

Exercises: Fill in the blank.
1. Let f(x) be a function defined on (—a, a). If f is , then
F.S. corresponding to f converges and

o0
nwT . nTx
ao—i-g Gp COS —— + by sin —— | =
a a

5 () + £)

n=1
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for —a < x < a. At x = +a, the F.S. converges to .
2. Let f be a function defined on (0, a). If f is , then F. sine
series corresponding to f converges and

Zb sin " = 2 (7(a7) + f(a))

for 0 < x < a. At x =0 and = = a, the F. sine series converges to .
3. Let f(x) be a function defined on (0, a). If f is , then F.
cosine series corresponding to f converges and

o0

nmr 1
- +
a — ==
0+ ancos—— = (f(a7) + f(="))
n=1
for 0 < x < a. At x = 0, the F. cosine series converges to . At z = a, the F. cosine series

converges to

1.4 Uniform Convergence

Definitions: Consider functions f,(z), n =1, 2, --- defined on the interval I.
oo N

1. We say that Z fn(x) converges to f(x) pointwise in the interval I if at each point z in I, lim Z falz) — f(z)| =
n=1 N=oo n=1

0.

o
Z fn(x) is called the Nth partial sum of Z fn(x) and is denoted by Sy (x); sum of the 1st N term.

n=1

2. We say that Z fn(x) converges to f(z) uniformly in the interval I if lim Max|Sy(z) — f(z)| =0.

N—oo z€l
n=1

Note. This maximum might not exist, in that case we use supremum; the least number greater than
|Sn(z) — f(z)| for every z, in place of it.

Lemma. If Z fn(x) converges uniformly to, say, f(x) and if f,,(z) are continuous functions, then f(z) is
also continuous.

Examples: Examine convergence of F.S. of following functions graphically.

1, O<z<m
1. f(:v)—{ -1, —m<x<0

T 1
ad 4 ) () ~—— = ———=cos(2n — 1)z
T) ~ nZ::l @n—1n sin(2n — 1)z g 2 nz::l (2n —1)2

2. g(x)=|z|, T<zx<m
oo

PUT ALL GRAPHS HERE

F.S. does not converge uniformly to f(z). F.S. converges uniformly to g(z).

Theorem 1. (Convergence Theorem, F. Coefficients Hypotheses)

Consider the series ao—l—z an €os "2 4 by, sin ML) If Z |an| + |bn|) converges then this series converges

n=1 n=1
uniformly (and hence to a continuous function) and if it is the F.S. of the function f(x), it converges

uniformly to f(z).



CHAPTER 1. FOURIER SERIES 29

Example. Use the above theorem to show that the F.S. of g(z) in the last example converges uniformly
to g(z).

Classroom discussion!

oo (e e]
Remark. Notice that for the function f in the last example, Z (lan| + |bn]) = Zﬁ does not
n=1 n=1

converge and hence the above uniform convergence theorem does not hold.

The following theorems state conditions under which F.S. of a function converges uniformly. These condi-
tions do not involve the F.S. itself.

Theorem 2. If function f(z) is periodic, continuous, and has a piecewise continuous derivative, then
F.S. corresponding to f converges uniformly to f on the entire real axis.

Theorem 3. Let f(z) be a function defined on (—a, a) such that

1. Tt is continuous, bounded (bdd « | f(z)| < M for all  and some M > 0) and has piecewise continuous
derivative, and

2. f((=a)*) = f(a™).

Then the F.S. of f converges uniformly to f on the interval (—a, a). (F.S. converges to f((—a)™) = f(a™)
at © = +a.)

Theorem 4. Let f(z) be a function defined on (0, a) such that

1. It is continuous, bounded, and has piecewise continuous derivative, and
2. f(07)=f(a™)=0

Then the F. sine series of f converges uniformly to f in the interval (0, a). (F. sine series converges to zero
at x =0 and = = a.)

Theorem 5. Let f(x) be a function defined on (0, a) such that it is continuous, bounded, and has
piecewise continuous derivative. Then the F. cosine series of f converges uniformly to f in the interval
(0, a). (F. cosine series converges to f(07) at z =0 and to f(a™) at z = a.)

Exercises: 1. Show that f(z) = |z|, —7 < 2 < 7, satisfies the hypothesis of theorem 3.
2. Show that f(z) =sinz, 0 < x < 7, satisfies the hypothesis of both theorems 4 and 5. What are its F.
sine and cosine series? Are they equal?

1.5 Operations on Fourier Series

o
Let f(z) be a 2a-periodic function and ag + Z (an cos 7 + by, sin %) its Fourier series.
n=1

Theorem 1. The F.S. of function c¢f(x) has coefficients cag, ca, and cb,, where c is any constant.
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Theorem 2. The Fourier coefficients of the sum f(z)+ g(x) are the sums of the corresponding coefficients
of F.S. of f(x) and g(x).

Exercise. Prove theorems 1 and 2, by direct computation of F. coefficients of cf(z) and f(z) + g(z).

Theorem 3. If f(z) is a 2a-periodic piecewise continuous function, then F.S. of f may be integrated
term by term. That is,

d d oo
/f(a:)da?:/ aodx+Z/ ancosm%—bnsin%) dx.
c c n=1’/c¢

Theorem 4. If f ( ) is a 2a-periodic piecewise continuous function and function g(z) is also piecewise
continuous on ( , then

/f dac—/aog da:—i—Z/ (an cos "2 + by, sin 2T2) g(z) dz.

Remarks: 1. The hypotheses in theorems 3 and 4 are weaker than that of the Convergence Theorem.
We are not requiring convergence of the F.S. to the function!
2. The term-by-term integration of a F.S. may not result in another F. series!

Theorem 5. (Uniqueness Theorem) If f(z) is periodic and piecewise continuous, then its F.S. is unique.

Remark. If f(z), 0 < x < a is piecewise continuous, then its F. sine and cosine series are unique.

o0
Example. Consider f(z) = |z|, -7 <z < 7. Its F.S.is f(z) = § — %Z - E cos(2n — 1)z (equality is

due to convergence theorem).

2

1. Find F.S. of h(z) = 5 — T f(x), -7 <z < 7.

2. Evaluate / h(t) dt, by use of theorem 3.
0

€T
3. Evaluate / h(t)dt, 0 < x < 7 directly.
0

4. Find F. sine series of g(z) = go(r — 1), 0 <z < 7.

5. Show that %fow g(x)sin(2n — 1)z dx = (znil)p,, n=1,2,---

3

6. Show that Zm =5
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Classroom discussion!

In the following exercise, we will see some issues that arise from term-by-term integration of a F.S., including
not being a F. series.

[o.¢]
_1\n+1
Exercise. The F. sines series of f(z) =z, 0 <z <7, is x = Z% sinnz, 0 <z < m. (Equality is
n=1

due to the convergence theorem.)

[e.o]

o
1. Show 22 = -y 4L 4 24(;;” cosnz, 0 <z <.
n=1

2
n=1
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[e.e]
2. Find the value of —24(;721)71 by noticing that it is the constant in the F. cosine series of g(x) = 2,

n=1
O<z <.
3. Using earlier parts, show that the F. cosine series of g(x ) =23 0< 2 <mis gx) = %2 +
4(— _ 12( )
cosmc 0 <z <, and use it to show 23 =7 :U—i—zismnx 0 <z < 7. (Note: The
n=1
series m2x + Z 2CD" ginna is not a F. series!)
n=1

4. Use earlier parts to find the F. sine series of h(z) = 23, 0 < x < 7.
The following exercise demonstrates a very interesting property of F. coefficients.

Exercises: 1. Let f be an odd periodic piecewise continuous function with period 2a. Show that
o0

a
11 fPx)de = g b2, where b,’s are the coefficients of F. sine series of f.
—a

Remark. This is a form of Parseval’s equality.

2. Let f be an odd periodic piecewise continuous function with period 2a. Show that lim b, = 0, where

n—oo
o0
b,’s are the coefficients of F. sine series of f. Hint: Divergence Test - If ch converges, then lim ¢, = 0.
n—oo
n=1

(If nll)néocn # 0, then Z:lcn diverges.)

We will use the following result when we apply comparison theorem to series involving F. coefficients.

Lemma. If sequence {b,,}>°; converges then it is bounded. That is, there exists a number M > 0 such
that |b,| < M for every n.

The following example demonstrates that term-by-term differentiation of a F. series is not always possible.
o0

Example. The F. sines series of f(z) =2, 0 <z <a,isz =) 2¢(-1)""sin 22 0 < z < a. (Equality

nm
n=1
is due to the convergence theorem.) Show that the F. series of f/(z) is not the term-by-term differentiated

F. series of f(z).

Classroom discussion!

Theorem 6. (Term-by-Term Differentiation Theorem, Function Hypotheses) If f(x) is 2a-periodic, con-
tinuous, and piecewise smooth, then the term-by-term differentiated F.S. of f(z) converges to f'(z) at
every point x where f”(x) exists.

oo
= Z — g, sin "2 4 2Th, cos "2 where f”(z) exists.

n=1
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o)
Example. Find the derivative of § %Z E cos(2n—1)x using the fact that it is the F.S. of f(z) = ||,

—_Tm<x<T.

Classroom discussion!

Theorem 7. (Term-by-Term Differentiation Theorem, F. Coefficients Hypotheses) If f(x) is periodic
o0

with F. coefficients ag, a, and b,, and if the series Z (|nkan| + |nkbn\) converges for an integer k > 1,
n=1

then f has continuous derivatives f, --- , f(*) whose F.S. are the corresponding term-by-term differentiated

series of f.

Remark. Suppose the above theorem holds. Then, the F. coefficient of f*) () are +(%E)*a,, and £ (25 )",

o o0
Also, Z (| £ (2 ra,| + | + (25)*a,|) = (g)kz (n*an| 4 |n*by|) converges. This means that not only
n=1 n=1

the F.S. of f*)(x) is obtained by k term-by-term differentiation of the F.S. of f(x), but also that the F.S.
of f*)(z) is equal to the function f*)(z) itself, due to [theorem 1 in section 1.4l

Example. Given u(z ZM e~ " tsinnz, where M and t are fixed positive constants. Find the F. series

of . Discuss the convergence of the F. series of d—“.

Classroom discussion!

The theorems in this section for interchanging the order of summation and integration or differentiation
are for F. series only and are based on the following general results.

Theorem 8. (Interchanging Integral and Summation) [See Review, Identities, Formulas and Theorems.|

Theorem 9. (Interchanging Differentiation and Summation) [See Review, Identities, Formulas and The-|
[OTCImsS|
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A convenient way to show uniform convergence is through Weierstrass M Test.

Theorem 10. (Weierstrass M Test) [See Review, Identities, Formulas and Theorems.|

Note. Theorems 8-10 are not in the textbook, but are stated in Review, Identities, Formulas and Theorems.

In the problem below, we need to find the derivative of a series which is not a F.S. with the respect to the
variable we must differentiate. In this case, we will use the above theorem for interchanging differentiation
and summation.

Example. (Mathematical Justification) Let f be an odd, periodic, piecewise smooth function with F. sine
oo

series coefficients b,, n = 1, 2, ---. Show that the function defined by u(z, t) = ane*”% sin nx satisfies
n=1

the following.

8%u __ du
& 5227 = ot

b. w(0,t) =u(m, t)=0,t>0

O<z<mt>0

c. u(z, 0) = %(f(m_) + f(z7),0<z<m

Classroom discussion!
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Chapter 2

The Heat Equation

2.1 Derivation and Boundary Conditions

We want to obtain the equation governing the flow of the heat in a thermally conducting rod whose solution
gives the temperature at any given position on the rod at any given time.

Assume the rod has a uniform cross section and that the temperature does not vary form point to point
in a cross section. Therefore the temperature in the rod will only depend on position z and time t.

PUT GRAPH HERE

We will make use of the following.

1. The law of Conservation of Energy - The amount of heat which enters a region plus what is gen-
erated inside is equal to the amount of the heat which leaves plus the amount stored; Heat in +
Heat generated = Heat out + Heat stored. This is equally valid in terms of rates of heat per unit of
time instead of amounts of heat.

2. The rate of heat stored in a body is proportional to the mass of that body and to the rate of change
of temperature.

3. Fourier’s Law - Heat flows in the direction of decreasing temperature at a rate proportional to the
gradient of the temperature, (so heat flow is positive when temperature gradient is negative.)

Notation - H = Heat: calorie, Joule, ... ; t = time: second, ..., T' = Temperature: °C, °F, ...
; m = Mass: gram, slug, ... ; L = length: cm, ft, ... ; p = Density = Vgﬁflsle: g;i?l, .
¢ = Heat Capacity per unit of Mass: grainioC’ .. ; K (“kappa”) = Thermal Conductivity: %,
.3 k (small letter k) = Diffusivity = vk %

Consider a slice of the rod which lies between  and x + Az. Let ¢(z, t) be the rate of heat flow at point x

and time ¢: SSS?LQ, ..., and assume q is positive when heat flow to the right. Let u(z,t) be the temperature

at point x and time ¢: °C, ... .

PUT GRAPH HERE

cal

sec) T and

The rate at which heat is entering the slice through the surface at x with area A is Aq(z,1t):

. Ca
Y et -

the rate at which heat is leaving the slice through the surface at  + Ax is Aq(x + Az, t)

“~
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0
The heat stored in the slice is ¢ p A Ax au
N—_—— ot

mass ——~——
rate of
change
of temp

(x,t): cal

@7 cos o

cal
secem3?

If the rate of the heat generated per unit of volume is g: ..., then rate at which heat is generated

cal
Sec)

in the slice is A Az g:
Thus, by the law of Conservation of Energy we have

Aq(z, t)+ AAx g = Aq(x + Ax, t) +cpAAJ:%, %, and so
q(JI+ALE7t) _(J(SU, t) —g=—c @
Az T

Taking the limit of both sides as Ax — 0 we get

Jdq . ou
ox T
By the Fourier’s law ¢ = —ng—z, and so % = —H%. Thus

Pu g cpou
—+==——,t>0.
8x2+/<c Kk Ot’

If no heat is generated, g = 0, and letting k = % we get

Pu 1 0u
W:%E,O<x<a,t>0.
Now, % = %%, 0 < x < a,t >0, describes the temperature v in a rod of length ¢ with uniform

properties and cross section, in which no heat is generated, and whose cylindrical surface is insulated. This
equation has many solutions: u(x, t) = 22 + 2kt, u(x, t) = e Ftsin 2. We want to have a unique solution,
therefore we place auxiliary conditions on our PDE:

1. The initial temperature distribution in the rod, (called initial condition, I.C., or initial value, I.V.).
2. What is happening at the ends of the rod, (boundary condition, B.C., or boundary value, B.V.)?

I.C.: u(x, 0) = f(z),0 <z < a.
B.C.:

1. Dirichlet B.C. (also called B.C. of the 1st kind)
u(0, t) = To, u(a, t) = T1, t > 0 (fixed, end temperatures)

2. Neumann B.C. (also called B.C. of the 2nd kind)
gu(0,t) = ¢1(t), 9%(a, t) = ¢o(t), t > 0
¢1 or ¢ = 0 corresponds to an insulated surface at the end x = 0 or x = a, respectively.

3. Robin B.C. (also called B.C. of the 3rd kind)
c1u(0, 1) +di1 940, t) = Pi(t), t > 0
cou(a, t) + dg%(a, t) =1a(t), t >0

For convection at the end z = a, hu(a,t)+~ %(a, t) = h T1(t), where h is convection coefficient: W,

..., and Ty(t) is the temperature of the medium surrounding the end at x = a. Similarly for convection at
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the end x = 0, hu(0,t) — K %(0, t) = hTy(t). Classroom discussion!

If a B.C. involves more than one boundary point, it is called a mixed boundary condition. For example:
u(0, t) = u(a, t) and %(0, t) = %(a, t). Of course, there are many more possible boundary conditions.

An Initial Value - Boundary Value Problem:

@—1% O<ax< t>0
0x2  kot’ T
U(O, t) =Ty, t>0
ou
hu(a, t)—i-/ia—(a, t)y=hTy, t>0
x
u(z, 0) = f(x), 0<z<a

There is exactly one and only one solution to a complete I.V. - B.V. problem.

2.2 Steady-State Temperatures

The steady-state temperature distribution is a time independent function v(x) which is a solution of the
time independent heat equation that satisfies the B.C.’s.

Physically, when heat conduction through a body is left undisturbed for a long time, the variation of the
temperature with respect to time dies out and we achieve steady-state temperature distribution. In this
case we expect

. . Ou
tliglo u(zx, t) = v(x) and tlgglo T 0.

Examples: State and solve (find) the steady-state problem corresponding to each of the following.

0?u  10u

1. 92 kot O<zx<a,t>0
u(0, t) = To, u(a, t) =Ty, t>0
u(z, 0) = f(x), 0<z<a

The S-S problem is

d2
d—;ézo, O<z<a

v(0) = Tp, v(a) =Ty

and its solution is v(z) = (11 — Tp) % + Ty. Classroom discussion!
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o _10u
ox?  kot’
u(0, t) = u(a, t), t>0

u(z, 0) = f(z), O0<z<a

The S-S problem is

O<zx<a,t>0

d?v
@ = 0, O<z<a
v(0) = v(a)

and its solution is v(x) = B. Classroom discussion!

In the last example, the mathematical solution of the S-S problem is not unique. However, due to physical
considerations there will be only one acceptable S-S solution!

The transient temperature distribution is the difference between the temperature u(z, t) and the steady-
state temperature v(z): w(z, t) = u(z, t) —v(x). Of course, it is called transient since physically we expect
it to die out as t — oo.

Example. State the problem satisfied by the transient temperature distribution for the example 1 above.

The transient problem is

Ow _ 10w 0<z<a, t>0
0z  kot’ TS
w(0, t) =0, w(a,t) =0, t>0

w(z, 0) = f(z) —v(z), O0<z<a.

Classroom discussion!
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Therefore, if we find the steady-state temperature and the transient temperature, then their sum will be
the solution of the heat equation. Notice that the PDE and the B.C.’s which the transient temperature
satisfies are [linear| and [homogeneous|

2.3 Example: Fixed End Temperatures

We want to solve

OPu _ 10u 0<z<a,t>0

— == r<a

dz?  kot’ ’

u(0, t) = To, u(a, t) =11, t>0 (Fixed, End Temperatures)
u(z, 0) = f(x), 0<z<a.

The solution u(z, t) is the sum of the steady-state solution v(x) and the transient solution w(zx, ¢). The
S-S problem is

d*v
@ == O, O<zr<a
v(0) = Tp, v(a) =T

with the solution v(x) = (T1 — Tp)% + Tp. The transient problem is
Pw 10w
ox?  kot’
w(0, t) =0, w(a, t) =0, t>0
w(z, 0) = f(z) —v(z), O0<z<a.

O<zr<a,t>0

we will solve the transient problem by the method of separation of variables (also called the product method
and the Fourier’s method). For this method to work it is essential to have a linear homogeneous PDE and
boundary conditions of type 1, 2 or 3, to be homogeneous.

Assume w(z, t) = ¢(x)h(t). Plug into PDE to get i/((;)) = %% Since the left-hand side is a function
of x and the right-hand side is a function of ¢, then this equality can only hold if the two sides have the
same constant value, say —A. (The use of minus sign “—” is due to the fact that we will always have
—A<0!) Plug w into the boundary conditions to get ¢(0) = ¢(a) = 0 since otherwise h(t) = 0, resulting in

w(x, t) = 0 which is not acceptable unless w(z, 0) = f(z) — v(z) = 0. Classroom discussion!

We know have two problems to solve.
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=Xk, t>0 ¢ () = -Xp(x), 0<z<a
¢(0) = ¢(a) =0
The first problem is a [separable ODE| and its solution is h(t) = ce™

Akt Classroom discussion!

The second problem is a [second order linear ODE with constant coefficients, Its characteristic equation is
r?2 = —\ and its solution will depend on the sign of .

I. A< 0. Then r = £v/—X and we will get ¢(z) = 0 resulting in w(zx, t) = 0. Classroom discussion!

II. A =0. Then ¢(z) = 0 resulting in w(z, t) = 0. Classroom discussion!

II. A > 0. Let A = p? with g > 0. Then r = +pi and we will get ¢(z) = sinpa with 4 = “T for
n=1,2, - --. Classroom discussion!

Set pn = "%, ¢p(r) = sinp,z and hy(t) = e~Hakt for m = 1,2, ---. Then each of the functions
wp(z, t) = sin ppx e Mkt ig a transient solution. Since in the transient problem, the PDE and bound-
ary conditions are linear and homogeneous, any finite linear combination of w,’s will also be a solution

of the transient problem. This is called the superposition principle. Using the superposition principle, we
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e} o
expect w(zx, t) = anwn(x, t) = an sin pin@ e M7k 1o satisfy the PDE and boundary conditions of the
n=1 n=1

transient problem. What is left to do is to find b,,’s such that w(z, 0) = f(x) — v(z) for 0 < z < a.

(0.9)
nmx
E bnsini =f(z)—v(z),0<z<a
a
n=1
Classroom discussion!

If f(x) is sectionally continuous, then F. sine series of f(x) — v(z) is unique (because f,(z) — p(x) will
be sectionally continuous since v(x) is continuous). Therefore, b,’s are the F. sine series coefficients of the
function f(z) —v(z), 0 <z < a:

2 a
by, = / (f(z) —v(x)) sin % .
a Jo a
Finally,
T nwr _n’r% ., 2 [ x nwT
u(z, 1) = T+ (T1—To) o+ busin 0 e with b, = — / [f(x) - <T0 +(T1 — T0)7>] sin “ % dy.
a = a aJo a a

Remarks: 1. For a graph of u(z, t), see your book.
2. If f is not continuous, but sectionally smooth, then u(z, 0) = 3(f(z7) + f(z ™)) at all  values at which
f has a hole or a jump.

Questions: 1. Does this infinite sum converge?
2. Does the u we have found satisfy the PDE, boundary conditions and initial conditions?
3. Is this solution unique?

The positive answer to these three questions is called “Mathematical Justification”. In this class, we will
call Mathematical Justification the proof for positive answer to the first two questions.

2.4 Example: Insulated Bar

We want to solve

0*u  10u

@:EE’ O<zr<a,t>0

ou ou

8—(0, t) = a—(a, t) =0, t>0 (Insulated Ends)
x x

u(z, 0) = f(x), 0<z<a.

This is a (linear) homogeneous PDE with (linear) homogeneous B.C.’s, therefore S-S temperature is not
needed. Assume u(zx, t) = ¢(z)h(t). Plug into PDE and boundary conditions to get the following two
problems. Classroom discussion!
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=Xk, t>0 ¢ (x) = -Np(x), 0<z<a
¢'(0) = ¢'(a) =0
The first problem is a [separable ODE| and its solution is h(t) = ce

ARt Classroom discussion!

The second problem is a [second order linear ODE with constant coefficients, Its characteristic equation is
r?2 = —\. Now, the solution will depend on the sign of \.

I. A< 0. Then r = £v/—\ and we will get ¢(z) = 0 resulting in u(z, t) = 0. Classroom discussion!

II. A =0. Then ¢(x) = Constant resulting in u(z, t) = Constant. Classroom discussion!

II. A > 0. Let A = p? with 4 > 0. Then r = £ui and we will get ¢(z) = cos pz with g = "= for
n=1,2, - --. Classroom discussion!
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Remark. Your book uses —\? in place of —\. That is, it assumes, a priori, that —\ < 0. We will not
make this assumption. First, we will solve the problem, as above, then we will find the sign of A using
the Sturm-Liouville theorem, and eventually just use the result from the Review, Identities, Formulas and
Theorems.

Set pn = "%, ¢u(x) = cospupz and h,(t) = e #nkt for ; = 0,1,---. Then each of the functions
Un(x, t) = COS tnx e~Hnkt is a solution. Notice this includes the case A = 0, for which wup(z, t) = 1 is,
indeed, a solution. However, it is easier to treat the case A = 0 or ug(z, t) = 1, separately. Since the

PDE and boundary conditions are linear and homogeneous, by the superposition principle, we expect

o (e.)
u(z, t) = ag(l) + Zanun(aj, t) =ao+ Zan COS UnX e~Hnkt What is left to do is to find ap and a,’s such
n=1 n=1

that u(x, 0) = f(z) for 0 < z < a.

o0
nmx
ao+z:1ancosa:f(a:),0<m<a
n=

Classroom discussion!

If f(x) is sectionally continuous, then F. cosine series of f(z) is unique (because f.(x) will be sectionally
continuous). Therefore, a,’s are the F. cosine series coefficients of the function f(x), 0 < x < a:

1 [/ 2 (¢
ag = / f(z)dz and a, = / f(zx) cos L .
a 0 a 0 a
Finally,
> nrr _n?x%
u(zx, t) = ag + E ancos — e a2 ' with ag and a,, as above.
a

n=1

Note. For a graph of u(z, t), see your book.
Question. What happens to u(z, 0) = f(x), if f is sectionally smooth but not continuous?

t—o00
summation and that of the limit and assume lim,, ,,, a, = 0.

2. Do the mathematical justification for this problem. Hint: See the last mathematical justification

1 a
Exercises: 1. Show that limu(z, t) = ap = — / f(z)dz. Hint: You may interchange the order of the
aJo
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problem and assume lim,, .o a, = 0.

3. Let f be an even 2a-periodic sectionally continuous function with F. cosine series coefficients ag, an,,

n =1,2---. Show that lim a, = 0. Hint: Start with f(z) ~ ag + Y ey ancos 2% and [ f*(z)dx =
n—oo

Jo a0 f(@)da + 307y an [3° f(2) cos "I dz. This results in another form of the Parseval’s equality.

2.5 Example: Different Boundary Conditions

First, we will discuss F. series of particular extensions of a function f(z), defined on (0, a), to the inter-
oo

oo
val (0, 2a) whose F. sine and cosine series will be of the form an sin W and Zan oS W,

n=1 n=1
respectively. Then, we will use them to solve certain 1.V.-B.V. problems with mixed boundary conditions.

o0
Examples: 1. Show that if f is a sectionally continuous function and f(z) = an sin(%;% for

n=1

a
0<a < then b, =2 [ fa)sin 2507 da.
0

Let m be a positive integer. Multiply both sides by sin W and integrate with respect to x from x = 0
to x = a. Interchange the order of summation and integration and use the jorthogonal properties| of sine
functions. Classroom discussion!

2. Let f be an arbitrary sectionally smooth and continuous function on 0 < z < a. Show that
o a

flz) = an Sinw where b, = 2/0 f(x) Sinw de.
n=1

First extend f to the interval (0, 2a) by reflecting it about the line = a. Call this function F: F(x) =

f(x), 0<z<a
{ fa—1z), a<z<2a
over the interval 0 < z < a. Apply the convergence theorem of the F. sine series of F' on the interval
0 < x < a, in which F(z) = f(z). Classroom discussion!

. Then find the F. sine series coefficients of F' and simplify to get an integral
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0 a
Exercises: 1. Show that if f(z) = Zan cos W for 0 < z < a, then a,, = 2/0 f(z) cos W dx.
n=1
Hints: Multiply both sides by cos W, where m is a positive integer, and integrate both sides with
respect to z from z = 0 to x = a. Interchange the order of integration and summation. Use the
of cosine functions.

2. Let f be an arbitrary sectionally smooth and continuous function on 0 < x < a. Show that f(x) =

e a

Zan cos W where a,, = 2/ f(z) cos W dx.

n=1 0

f(z), 0<z<a
—f(2a—x), a<z<2a
series coefficients of F' and simplify to get an integral over the interval 0 < x < a. Apply the convergence
theorem of the F. cosine series of F' on the interval 0 < z < a, in which F(z) = f(z).

Hints: First extend f to F(z) = { on 0 < x < 2a. Then find the F. cosine

2n—1)mx

[o¢]
Remark. If f(z), 0 < x < a, is sectionally continuous, then its F.S. of the form an sin(T or

n=1
o0
2n—1 : - . . . . .
E @, COS % are unique. This is due to the uniqueness of F. series of periodic, sectionally continuous
n=1

functions.

Now, let’s solve the following 1.V.-B.V. problem satisfied by the temperature in a uniform rod with initial
temperature distribution f(x), one end at fixed temperature Tj, and insulated at the other end.

o _ 10w
0z2  kot’
U(O, t) =Ty, t>0
gZ(a,t)zo, t>0

u(z, 0) = f(z), 0<z<a

O<zx<a,t>0

We will solve this problem and also state the steps needed to solve a general heat equation with initial and
boundary conditions.
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1. If the PDE, a B.C., or both are not homogeneous (assuming both are already linear), find the steady-
state temperature distribution v(z). If this step is not needed go to step 3.

d2

d—;;:o, O<zx<a
’U(O):To

dv

%(a):()

The S-S temperature distribution is v(z) = Ty. Classroom discussion!

2. Determine the I.V.-B.V. problem satisfied by the transient temperature distribution w(z, t). Class-
room discussion!

y—w—la—w O<z<a, t>0

or2  k ot’ ’
ow

0,t) = —(a,t)=0, t>0

w(0, 1) = 5 a, ) =0, >

w(zx, 0) = f(x) — Ty, 0<z<a

3. Use the method of separation of variables.

(a) Write w(zx, t) = ¢(z)h(t) (u in place of w, if step 1 was not needed) and plug it into the PDE
and boundary conditions. The PDE will reduce to two ODE’s, using a constant of separation,
say —A. One ODE involves T and is first order and the other is second order and involves ¢. The
boundary conditions will reduce to boundary conditions for the second order ODE. Classroom

discussion!
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f;:((tt)) =M, t>0 ¢"(2) = =Xg(z), 0<z<a
¢(0) =0
¢'(a) =0

(b) Solve for T'. Classroom discussion!

h(t) = C e M

(c) Solve for ¢, by considering negative, zero, and positive values of A. In this step we will also
find values of the constant of separation. This step will become shorter later on by use of the
Sturm-Liouville theorem, and eventually will be done instantly by use of the result from Review,
Identities, Formulas and Theorems.

i. A< 0. Classroom discussion!

¢(z) =0 = w(z, t) =0, not acceptable!
ii. A =0. Classroom discussion!

¢(x) =0 = w(z, t) =0, not acceptable!
iii. A > 0. Let A\ = p? with g > 0. Classroom discussion!
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= (2n2_(11)7r, d(x) =Cysinpz forn=1,2,---.
(d) Label the solutions: u, = (2"2_(11)”, Tn(2) = Sin pnz, hn(t) = e 2% and wy(z, t) = én(z)hn(t),
forn = 1,2,---. (We can use 1 for the constant coefficients. This step can be skipped or

combined with the next one!)

(e) Use the superposition principle to make a linear combination of the solutions in the last step
and find the constants using the initial condition.

_ (27171)271'2

oo 0
’UJ(LL“, t) = anwn(i, t) = an sin% e Tz R
n=1 n=1

w(z, 0) = an sin(%g% = f(z) —Tp
n=1

Classroom discussion!

by, = Z/ (f(x) — Tg)sianx
0
4. The solution is u(z, t) = v(x) + w(z, t).

_ (2n71)27r2

u(z, t) =Ty + an sin W e a2 " where b, = 2/ (f(z) — Tp) sin W dx
0

n=1

5. Mathematical Justification. (We will do this only if the problem specifically asks for it). Classroom
discussion!
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2.6 Example: Convection

We want to solve

@—la—u 0<z<a,t>0
or2  kot’ T
u(0, t) = T, t > 0 (Fixed Temp Tj at the end z = 0)

0
ﬁa—uu(a, t) + hu(a, t) = b1y, t >0 (Convection to a medium at Temp T} at the end = = a)
x
u(z, 0) = f(x), 0<z<a

with k, k and h positive constants.

The solution is u(z, t) = v(x) + w(z, t) where

d?v Pw 10w
@:0, 0<zxr<a and W:%E, 0<$<a,t>0
v(0) =Ty w(0, t) =0, t>0
kv'(a) + ho(a) = hTy /fgl;}(a, t)+ hw(a, t) =0, t>0
w(z, 0) = f(z) —v(x), 0<z<a.

Classroom discussion!
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o() = Ty + "0,
Let w(z, t) = ¢(x)h(t) and apply the method of separation of variables. Discuss the three cases for the
constant of separation. Classroom discussion!

For n = 1,2, .-, A = —u2 where ju,’s are the positive solutions of tan ya = —%p and hy(t) = e*uikﬂ

¢n(x) = sin ppr and wy(x, t) = ¢n(x)hy,(t). Use the superposition principle and apply the initial condition.
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o0 o
w(z, t) = anwn(fc, t) = an Sin finx e Hnkt
n=1

n=1
w(z, 0) = ib” sin ppx = f(z) — v(zx)
n=1

Show orthogonality of functions {sin y,xz} > ; and use it to find the constant by,’s. Classroom discussion!

a
o0 / (f(:v) — Ty — %x) sin i dx
u(z, t) =Ty + h(gjrzzo)m + an sin pu, e~ Hakt where b, = 29 —
n=1 / sin? pu,x dx
0

a
Exercise. Show that / sin? p,z dx = % + % cos? fina.
0

2.7 Sturm-Liouville Problem

Definition. The Sturm-Liouville (S-L) problem, or S-L eingenvalue problem (EVP) is
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% [s(az) %] —q@)p+p(x)p =0, I<x<r % [s(x) Z—I} —q@x)p+p(x)p =0, I<x<r
a1¢(l) — azd’(l) =0 o o(l) = ¢(r)

B1o(r) + Bod (1) =0 s(D)¢'(1) = s(r)¢'(r)
where
a. s(z), s'(z), ¢(x) and p(x) are continuous for [ <z <r,
b. s(x) >0 and p(x) >0 for il <z <r,
c. a?+a3 > 0 (or, a; and ag are not both zero) and 57 + 35 > 0 (or, B; and S are not both zero), and

d. The parameter A occurs only where shown.

Remark. Your textbook uses “A?” in place of “\”. We will never do that because it implies, in our
notation, that A > 0. This is something that must be proven!

Notes: 1. The above problem with the boundary conditions on the left side is called a Regular S-L. EVP.
2. The above problem with the boundary conditions on the right side (periodic B.C.’s) is called a Irregular
S-L EVP.

3. If s(z), §'(x), ¢(x) and p(x) are continuous only on | < x < r, or either s(x) or p(x) is positive only on
I < x < r, then above problem with the boundary conditions on the left side is called a Singular S-L EVP.

Definition. The values of A for which the S-L EVP has a nonzero solution are called eigenvalues and the
corresponding nonzero solutions ¢ are called eigenfunctions.

The following two theorems are for the Regular S-L EVP: a1¢(l) — aad’ (1) = 0, B1¢(r) + B2¢’ (1) = 0.
Theorem 1. Consider the Regular Sturm-Liouville Problem.
a. The eigenvalues A are real-valued.

b. There are infinitely many different eigenvalues A1, A2, -+ and an infinite number of eigenfunctions
@1, @2, --- corresponding to them.

c. The eigenfunctions are unique up to a constant multiple (If ¢ and ¢ are two eigenfunctions corre-
sponding to the same eigenvalue A, then ¢ = ¢t for some nonzero constant c.)

d. If n # m, the eigenfunctions ¢,, and ¢,, are orthogonal with weight function p(x): / On () om (z)p(x) dx
!
0 for n # m.

Proof of Orthogonality of Eigenfunctions - Classroom discussion!
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Theorem 2. Consider the Regular Sturm-Liouville Problem.
a. lim A\, = co.
n—oo
b. If the eigenvalues are numbered in order A\; < Ay < ---, then the eigenfunction ¢, corresponding to

An, has exactly n — 1 zeros in the interval [ < z < r (endpoints excluded).

c. If g(x) >0, ajag > 0 and (5152 > 0, then all eigenvalues \,, are nonnegative.

Proof of A > 0 - Classroom discussion!
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In the above proof we derived the following result.

d
Theorem 3. (Rayleigh Quotient) If e [s(w) Z—ﬂ —q(z)d + \p(x)p = 0, then

T

—s()o(x) 22|

\ + /l [S<m>(%>2+q<az>¢2(x> da:.
/l¢2($)p(x)d:r

Remark. If ¢/(x) # 0, or ¢(z) is not a constant function, then A > 0.
To show this, we need the fact that for a continuous function f with f(x) # 0 and f(z) > 0 for a <z < b,

b
then / f(x)dx > 0. (Alternatively, we could use the fact that for a continuous nonnegative function f
a

b
with / f(z)dx =0, then f(z) =0 for a <z <b.) Classroom discussion!
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Theorem 4. For Irregular Sturm-Liouville problem (periodic boundary conditions ¢(I) = ¢(r) and
s(l)¢'(1) = s(r)¢’(r)), theorems 1 and 2 and the above remark hold, except for the uniqueness of the
eigenfunctions.

Example. Show that the eigenvalues \ of the problem ¢"(x) = —\¢(x), 0 <z <a are positive val-

(
(0

)=0
k' (a) + he(a) =0
ued, where £ > 0 and h > 0.
Classroom discussion!
Exercises: 1. Prove eigenfunctions of the problem ¢"(z) = —A¢(z), 0 <z < a are orthogonal:

a 5(0) = 9'(a) =0
¢On(x)dm(x) de = 0 for n # m. (Do not just quote the S-L theorem!)

0
2. By use of the S-L theorem, find the exact value of the eigenvalues of the problem
u(x) = -du(z), 0<z<m.
u(0) =u(m) =0
Theorem 5. (Generalized Fourier Series) Let ¢1, - - - , ¢, be eigenfunctions of the Regular Sturm-Liouville
problem with ajag > 0 and 162 > 0. If f(z) is a sectionally smooth function on the interval [ < x < r,
oo

then nz::lcn on(z) = 2(f(z7) + f(z™)) for | < 2 < r where ¢, = 1 T ¢n¢" gc;a:dx

Note. This theorem is in the section 2.8 of your textbook.

Exercise. Derive the formula for the constants in the last theorem Suppose f(x) is sectionally continuous

S f ¢n )p(x) dx
fl¢2 (z) du

and f(z ch ¢n(x), for | < x < r. Show that ¢, = . You may interchange the

order of summatlon and integration.
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2.9 Generalities on the Heat Conduction Problem

We want to solve the following I.V.-B.V. problem satisfied by the temperature in a nonuniform rod.

0 ou ou

p </@(;E)8x> = p(a:)c(a:)a, l<zx<r,t>0
ou

a1u<l7 t) - O‘QaixU? t) =C, t>0, a2 >0
ou

Bru(r, t) + 52%(?”, t)=c2, t>0,6182>0

u(z, 0) = f(x), l<z<r

The values (zero or positive) of the constants a’s and ’s correspond to fixed temperature, insulated or
convection at the ends of the rod. Classroom discussion!

If not both ¢; = 0 and c2 = 0, we must find the S-S temperature distribution v(x), which is the solution
of the following.

d dv

dx</{(l')dx>—0, l<1’<’l"
1) - a0 = >0

v a2d:c =, Q1o =

Buor) + oo (r) = 2, Bifa 20

Now, we discuss all cases except the case of both ends being insulated (o; = 1 = 0 and ¢; = co = 0). We
have seen that case before. In that case, A = 0 was an eigenvalue of the S-L. problem. So, we assume either
a1, B1, or both are positive. Then

A
a1 B — a2y = €1

x N )
v(x) = —= dé+ B where A and B are solutions of the system T .
(@) /z”(é) B1[/lﬁé)d£+3]+ﬁzﬁ’(%—02

Classroom discussion!
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For ease of notation, let & = L [ k(z)dz, p = - [ p(z) dz, and ¢ = L, [ ¢(x) dw; the average values
of k(x), p(x), and c(z), over the 1nterval I <z <, respectlvely. Define s(x) = % and p(z) = %,

which are dimensionless, and let k = %.

The transient temperature w(zx,,t) (or u(z, t), if ¢; = ca = 0) is the solution of the following problem.

0 ow 1 ow
p (s(az)ax> = %p(a:)a, l<z<rt>0

aqw(l, t) — aggi:(l, t)y=0, t>0,a1a3>0
ow
Blﬂ)(?", t) + 182%(7‘7 t) = 07 t> 07 ﬁlﬂ? Z 0

w(z, 0) = f(z) —v(x), l<z<r

Classroom discussion!

Now, apply the method of separation of variables by assuming w(z, t) = ¢(x)h(t). This will result in the
following ODE and Regular S-L. EVP.

i~ M t>0 = [s@) 2] = ~xpl@)é, 1<w<r
a19(l) — azd’(1) =0

B1o(r) + Bad'(r) =

R (t) d {

Classroom discussion!
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Then h(t) = e ¥, (We can use 1 for the constant of integration. Why?). It is easy to see that no nonzero
constant function can be a solution for ¢. (Show it!) Classroom discussion!

So according to our S-L theorems we have the following.
1. There are an infinite number of positive eigenvalues; 0 < A; < Ao < - -.
2. For each eigenvalue, there is a unique (up to a constant multiple) eigenfunction, ¢,, n =1, 2, ---
T
3. Eigenfunctions are orthogonal with weight function p(x): / O () (x)p(z) dz = 0 for n # m.
l

o

4. If f(x) is a sectionally smooth function on the interval | < x < r, then ch on(z) = 2(fz7)+f(zT))

n=1
fl <Z>n )p w) dz

for | < z < r where ¢, =

(o @)
Set wy(z, t) = ¢p(x)e” " and w(z, t) chwn x, t) = chgbn(m)e_)‘”kt. Find constant ¢,, so that

— ch¢n(x) = f(x) —v(z) forl <z <r.
n=1

[ (f(@) = v(@))dn(2)p(z) da
i 92(z) p() dz

Therefore, u(z, t) ) + chgbn Akt swhere ¢, = and k, p(z) and

v(z) as stated before.
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Remarks: 1. If f(z) is sectionally smooth, then u(z, 0) = 1(f(z7) + f(z™)), while if f(z) is also
continuous, then u(z, 0) = f(x).

o0
2. tlim u(z, t) = v(z). For any fixed value t;, the series chqﬁn(a:)e_knktl converges uniformly, thus the

— 00

n=1
solution u(z, t1) is a continuous function (in x) even though the initial condition f(z) might not have been
a continuous function.

Exercise. Show that for the above solution tlim u(z, t) = v(z). Hints: You may interchange the order of
—00

the limit and summation. Assume ¢,,’s are bounded.
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The Wave Equation

3.1 The Vibrating String

We want to obtain the equation governing the motion of a flexible, taut string of finite length and with
fixed endpoints after being put into motion by an initial force.
We will make the following assumptions.

1. The string is uniform: uniform cross section, uniform density, ... .

2. The motion takes place entirely in one plane, and in that plane each particle moves at right angle to
the equilibrium position of the string. Classroom discussion!

3. The string is perfectly flexible, that is; the tension at any point on the string is tangent to midline
of the string at that point

We will make use of the following.
1. Newton’s First Law of Motion - Some of forces on a particle in equilibrium is zero.
2. Newton’s Second Law of Motion - F' = ma .
Notation- L = length: ¢m, ft, ...; t = time: second, ...; m = Mass: gram, slug, ...; p = Linear Density =

mass . gram kg slug
length® cm > m> ft

Consider a portion of the string which lies between x and x + Az. The portions of the string to the right
and left of our element exert forces on it which causes acceleration. Let u(z,t) be the displacement of the
string, at point x and time ¢, from the equilibrium; cm, ft, ... .

PUT GRAPHS HERE

Let T'(x) and T'(x + Az) be the tensions at the end = and = + Az, respectively; dyn = grgn@cm, N = ’Zi:;,
lb, ... . Since our string only moves vertically, then the sum of forces in the horizontal direction must be
zero (Newton’s 1st Law of Motion). Hence

—T(x)cosa+ T(x+ Ax)cos =0, %, =
T(x)cosa =T(x + Az)cos 3

Since this will hold for every x and Az, then we can assume each side of the above is the same constant.

T(x)cosa =T(x + Az)cosf =T constant —>
T(x) =L T(x+ Az)=-L

cosa’ cos 3
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Using Newton’s 2nd Law of Motion in the vertical direction we get the following.

2

—T(z)sina+ T(x + Az)sin f —mg = 8t2 (x t), %
P v
ma

Divide both sides by cos «, use m = p Az and the above identities to get
—Ttana +Ttan B — pAz g = p Az & at2 ¥ (z, t).

Now, tan « and tan 8 are the slopes of the strings at x and x + Ax, respectively; that is, tana = g—;(:n, t)
and tan 8 = (95 + Az, t). Using these and dividing both sides by Az we get the following.

x x x, 2
2 ( +AA2 S ( t):pr<22(x t)+g)

Taking the limit of both sides as Ax — 0 we get

TB.’L'

Pu 1 Pu 1 9 T
g2 - Eop Tl e =4

Assuming ¢? is very large in comparison to ¢, then we can neglect the term c% g. This gives the equation
of the vibrating string, wave equation, in one-dimension,
Pu 1 0%

ﬁzfzw,0<x<a,t>0.
X C

Classroom discussion!

For the vibrating string we have described here, the boundary conditions are zero displacement at the
ends; u(0, t) = u(a, t) = 0. But to describe the motion of the string we must also specify the initial
position, u(x, 0), and the initial velocity, % 9u ¢ (2, 0). Therefore, the BV-IV problem for the string under our
assumptions is the following.

Ou_10u  cat>0
0z 2 o2’ s
u(0,t) =u(a,t) =0, t>0

u(z, 0) = f(x), 0<z<a

0

a—?(:ﬂ,O):g(aj), 0<z<a

3.2 Solution of the Vibrating String Problem

‘We want to solve
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@ = iaiu 0<z<a,t>0

ox? 2 o2’ ’

u(0, t) =u(a, t) =0, t >0 (Fixed Ends)

u(z, 0) = f(x), 0 < x < a (Initial Position)
?;;(37, 0) = g(z), 0 < z < a (Initial Velocity).

Since the PDE and the boundary conditions are linear and homogeneous, we can apply the method of
separation of variables.

Assume u(z, t) = ¢(x)h(t). Plug into PDE and boundary conditions. Using —\ as the constant of sep-
aration we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of A. Classroom discussion!

" (z) = —Ap(z), 0<z<a R"(t) + Ac?h(t) =0, t>0
X(0) = X(a) = 0

It is easy to see that no nonzero constant function can be a solution for X. (Show it!) Therefore,
by the S-L theorem, A > 0. Let A = p? with 4 > 0. The solution of the above EVP is p = o,
¢(xr) = sinpa = sin™2% for n = 1,2, ---. And the corresponding solutions of the ODE are h(t) =
a cos uct + bsin pct = a cos %Ct + bsin %Ct Classroom discussion!
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Let pin, = "%, ¢p(x) = sin "2, hy,(t) = ap cos "Z% + by sin "% and up (z, t) = ¢p(@)hn(t) = (an cos “I¢ +

b, sin "“Ct) sin 2L

By the superposition principle

E cnun x, t) g (ancos%@f%—bnsin%d)sin%
n=1

where we have written a,c, and b,c, as a, and b, again, respectively.

Now, use the initial conditions to find the constants a,, and b,.

oo
0) = Zansin% =f(z),0<z<a
By the uniqueness of the F. series, assuming f(z) is sectionally continuous, a, = - / f(x)sin 2% dx.

Now, assuming we can differentiate the series with respect to t term-by-term, we get

(e}

0

8—1:(:6, t) = Z(—a ITE gjp BIC ”“Ct + b, "7 cos "”Ct) sin 7% and
n= 1
Zb M sin M7 = g(x), 0 <z < a

2 a
Again, by the uniqueness of the F. series, assuming g(x) is sectionally continuous, b, = — / g(x) sin "2F dz.
nmwe Jo

Thus

o0
u(z, t) = Z Gy, COS ”mt + b, sin "“Ct) sin M2 with
n=1
2 [@ 2 [
Gy = / f(x)sin "% dx and b, = — [ g(z)sin "2 du.
ato nwe Jo

Of course, if the problem asks for it, we will do the step of mathematical justification.

Exercise. Show that u(zx, t) Zan cos 1< ””Ct n “7% satisfies
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@—iaiu 0<zr<a,t>0
ox? 2 o2’ ’
u(0,t) =u(a,t) =0, t>0

u(z, 0) = f(x), 0<z<a

ou

E(m,O):O, 0<z<a

where a,,’s are F. sine series coefficients of continuous and sectionally smooth, odd 2a-periodic extension

of f.

Now, let’s consider the following specific example:

< g
2 =
<y g(x)=0,0<z <a.

PUT THE GRAPH HERE

That is, the string is lifted up one unit in the middle and then released.

Since g(z) = 0, we have b, = 0 for n = 1,2, ---. Earlier we found that the F. sine series of f is
(o)
folx) = %Z% sin "7%, the equality is due to the convergence theorem. Therefore, a, = %Su; for
n=1
n=1,2,---. So,
o0
u(z, t) =5 SN 5 gin 2T oo nTct
n=1

Using the identity sinacosb = (sin(a + b) + sin(a — b)), we get

00
. %Z [ g sin & o (g(cl—ct) T %811;27 sin n7r(2+ct):| = % [ﬁ(x — ct) —‘,—ﬁ(x + Ct)}.

Now, we can easﬂy graph u(zx, t) at different times.

PUT THE GRAPHS HERE

3.3 D’Alembert’s Solution

There is another simple way to solve the wave equation 223 = i%— We start by making a change of
variables. Let w = xz + ¢t and z = z — ¢t. Think of u as a function of w and z. Rewrite the wave equation
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in terms of independent variables w and z. Using the chain rule we can show that

ou B ou Ou

or  ow o2

ou ou ou

o~ ow ‘o2

0% 0%u 9w 0%u

922 0wl lowd: T 922

Pu 5 0% 5 O*w 5 0%

ﬁ_cauﬂ Caw(?z C@

Classroom discussion!

Therefore,
Pu_ 1o o
0x? ¢ o2 owdz
Now,
0%u
5a =0= - = u(z, t) = ¢(x + ct) + (z — ct)

where ¢ and 1 are arbitrary twice differentiable functions. Classroom discussion!

66
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This solution, u(zx, t) = ¢(z + ct) + (z — ct) where ¢ and 1) are arbitrary twice differentiable functions,
of the wave equation is called the d’Alembert’s solution.

Exercise. Suppose ¢ and v are twice differentiable functions. Show that u(x, t) = ¢(z + ct) + ¥ (x — ct)

. . 2 2
satisfies the wave equation ‘37% = 1o

Now, let’s solve the problem we solved earlier by using F. series by the d’Alembert’s method.

Ou_ 10 0<r<at>0
ox2 2 o2’ s
u(0, t) =u(a, t) =0, t>0

u(z, 0) = f(x), 0<z<a

0

8—7:(:6, 0) = g(z), 0<z<a

We look for a solution of the form wu(z, t) = ¢(z + ct) +1p(x — ct). This function already satisfies the PDE.
Now, we must find functions ¢ and 1 so that u satisfies the initial and boundary conditions. First, we will
apply the initial conditions. Notice that %(x, t)=cd(x+ct)—cy/(z — ct).

ua,0)=fz) = o) +v@) =f@)  O<w<o
5@ 0)=gla) = cd@)—ct(@)=g(), 0<z<a

The solution of this system is

(f(z) + G(x) + k) and
f(z) — G(z) — k), for 0 < x < a, where G(z) = i/ g(&) d¢ and k is a constant.
0

<
—~
S
~
Il
Nl—= N

Classroom discussion!
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Notice that these formulas give ¢ and % only on the interval (0, a), and so we can not use them in

u(z, t) = ¢(x + ct) + (x — ct) since the arguments x + ¢t will not be in (0, a) for large time ¢ values.
To overcome this problem, we will extend f and g to the entire real number line; call these new functions
f and §, respectively. So, ¢(z) = (f( ) + G(z) + k) and ¢(z) = (f(x) — G(x) — k). Now, apply the

boundary conditions to figure out What type of extensions is appropriate.
w0, ) =0 = | flct)+ f(—ct)] + [é(ct) - é(—ct)} —0
u(a, t) =0 = | fla+ct)+ fla— ct)] + {é(a +ct) — Gla— ct)} =0

Classroom discussion!

Since functions f and g (or G) are independent of one another, these conditions hold only if
flct)+ f(—ct) =0 Gct) — G(—ct) =0
oo ~ and ~ ~ .
fla+ct)+ fla—ct) =0 Gla+ct)—Gla—ct) =0

The condition f(ct)+ f(—ct) = 0 holds if f is an odd function, while the condition G (ct) — G(—ct) = 0 holds
if G is an even function. The remaining two conditions fla+ct)+ fla—ct) = 0 and Gla+ct)—G(a—ct) = 0
will also hold if both f and G are 2a-periodic functions. Classroom discussion!

Therefore, f(z) = fo(z) and G(z) = Ge(x). Hence, ¢(z) = $(fo(z) + Ge(x) + k), and ¥(z) = L(fo(z) —
Ge(x) — k), for —0o < x < oo. Finally,

u(z, t) =3 [folz+ct) + folz — ct)] + 1 [Ge(z + ct) + Ge(x — ct)] where G(z) = i/om g(&) d€.

xr
Question. What extension of g results in G(x) = 1/ g(&) d€ being an even 2a-periodic function?
0

c

The answer to the above question, is in the following exercises.

Exercises: 1. Show that if g(x) is an even (or odd) function, then G(z) = [ g(&) d€ is an odd (or even)
function.

2. Show that if g(x) is an odd 2a-periodic function, then fw+2a (&) d¢ = 0. Hint: Use the earlier result
that fccﬂ’ f(z)dx = fo x) dz, for any p-periodic function f, twice; once for ¢ = z and then for ¢ = —a.
3. Show that 1f g(x) is an odd (or even) 2a-periodic function, then G(z) = [ g(£) d¢ is an even (or odd)

2a-periodic function.
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Now, we can write the above d’Alembert’s solution in the following more informative way.

Exercise. Show that the above solution can be written as

x+ct
u(z, t) = % [ folz + ct) + folx — ct)] + 1/ Jo(&) dE.

2¢ —ct

Remarks: 1. Notice that the solution at the point (z, ) depends on the initial conditions in the interval
[x — ct, x + ct]. This interval is called the domain of dependence. PUT THE GRAPH HERE.

2. Said another way, the initial condition at (x, 0) influences the solution in the region between the lines
y=x — ct and y = x + ct. This region is called the region of influence. PUT THE GRAPH HERE.

To complete the relationships between a function and its extension, do the following exercise.

Exercise. Show that if differentiable function f(x) is an odd (or even), 2a-periodic function, then f’(x)
is an even (or odd), 2a-periodic function. Hint: Start with f(—z) = f(z) or f(—z) = —f(z), and
f(x 4+ 2a) = f(x). Differentiate both sides.

The above result will be useful in the following exercise.

0%u 1 9%u

E ise. Solve — = ——
xercise. Solve 92— 2o O<z<a,t>0
ou ou
—(0,t) = —(a,t) =0, t>0
5 0 ) =5-(a, ) =0, t>
u(z, 0) = f(x), 0<z<a
0
a%b(g;,o)zo, O<z<a

by the d’Almebert’s method.

3.4 Generalities on the One-Dimensional Wave Equation

We want to solve the following I.V.-B.V. problem satisfied by the motion of a nonuniform string.

2 (0 _ )
8:1;<S(x)61:)_ 2 92 l<z<r,t>0

0
aqu(l, t) — aga—Z(l, t)y=c, t>0, 0109 >0

Bru(r, t) + 5222(% t)=c2, t>0,p12>0
u(z, 0) = f(x), Il<z<r
ou

—(z, 0) = g(x), l<z<r
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where s(z), s'(x) and p(z) are continuous and both s(z) and p(x) are positive on | < x < r.

Suppose the string ends are attached to a spring-mass system and allowed to move only vertically in a
slot. Let k; and k, be the spring constants at the ends x = [ and = = r, respectively. Let T; and 7T, be the
tensions in the string at the end x = [ and = = r, respectively. PUT THE GRAPH HERE.

Then, the boundary condition at the end = = [ is —kju(l, t) + Tl%(l, t) = m%(l, t) while the bound-
ary condition at the end x = r is kyu(r, t) + Trg—z(r, t) = m%(l7 t). If the mass is small, then
kpu(l, t) — Tl%(l, t) =0 and kyu(r, t) — TT%(T, t) = 0. And if no spring is used (the ends move freely up
or down in the vertical slots, without friction), then g—;(l, t) = 0 and %(l, t) = 0. This is called the free
end boundary condition. The boundary conditions listed in our problem are the most general conditions.
Classroom discussion!

Now, we discuss all cases except the case oy = 81 = 0. If not both ¢; = 0 and ¢y = 0, we look for a solution
of the form u(z, t) = v(z) + w(z, t). However, neither of the names“steady state solution” nor “transient
solution” is appropriate. Here, v(x) represents the equilibrium solution and is the solution of the following.

d dv

dx<3(l')dx>—0, l<$‘<1"
(1) — a2 (1) = >0

Qv a9 dr =, 0102 =2

dv
Bro(r) + 52%(7“) =cg, P12 >0
We can solve this as we did for the heat equation.

A
a1 B — 25y = €1

x A .
v(x) = —4- dé+ B where A and B are solutions of the system r .
(=) /zs(é) Bl[/lsé)d@rB]Jrﬁ%j;)_cQ

The function w(x, t) (or u(x, t), if ¢; = co = 0) is the solution of the following problem.
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9 (P P
8:1:<S(x)8:v)_ 2 Il<z<rt>0

aqjw(l, t) — ag?;;(l, t)=0, t>0, g >0

0
Blw(r7 t) + /8287/:;(7.7 t) - 07 t> 07 51/82 Z 0

w(z, 0) = f(z) —v(x), l<z<r
%T(x, 0) =g(x), l<z<r

Classroom discussion!

Now, apply the method of separation of variables by assuming w(z, t) = ¢(x)h(t). This will result in the
following ODE and Regular S-L. EVP.

% [s(z) ZX] = —Ap(2)X, I<z<T R"(t) + Ac?h(t) = 0,t >0
a1 X(l) —a2X'(1)=0
X (r) + B X'(r) =0

Classroom discussion!

Since we have assumed either a7, 81, or both are positive, it is easy to see that no nonzero constant
function can be a solution for X. (Show it!) In the case a; = 1 = 0, A = 0 will be an eigenvalue of the
S-L problem. Classroom discussion!

So, according to S-L theorems we have the following.
1. There are an infinite number of positive eigenvalues: 0 < Ay < Ag < ---.
2. For each eigenvalue, there is a unique (up to a constant multiple) eigenfunction, ¢,, n =1, 2, ---.

,
3. Eigenfunctions are orthogonal with weight function p(x): / On ()P (x)p(x) de = 0 for n # m.
l

o0

4. If f(x) is a sectionally smooth function on the interval | < z < r, then ch on(z) = 3(f(z7)+f(zT))

n=1
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flcbn pw)dw '

for | < z < r where ¢, =

Since A > 0, the solution of the ODE is h(t) = acos vV Act + bsin v Act. Forn =1, 2, ---, set A, = p2 with
tn >0, ¢n(z) = Pn(x), hn(t) = ay, cos upct + by, sin ppct, and wy(z, t) = (ay cos ppct + by, sin pyct)pn (),
o

then w(z, t) = Z(an €O fnct + by, sin ppct)p, (). Assuming we can differentiate the series with respect

n=1
o0
to t term-by-term, we have %—1:(337 t) = Z(—an,unc sin pipct + by punc cos ppct)dp(x). Find constant a, and
n=1

b, so that initial conditions are satisfied. Classroom discussion!

o0

w(z, 0) = Zand)n(a:) = f(z)—v(z), I<z<T
anﬂnc¢n —g( ), l<z<r
So,

[ @)= vtasupio) do | s@on(@ito)da

/ e and bn—— / e

u(z,t) = / oA+ B+ Z Qp, COS finct + by, sin pupct)dp, (x)
=1
where A, B, a, and b,, are as stated before.

ap —

Hence,

Remarks: 1. The mathematical justification step still remains and we will not do them here!
2. limu(x, t) does not exist.
t—o00
3. There is no simple relationship between p,’s. (In the case of the uniform string with fixed ends, we
had pn = n,UJl')
4. u(z, t) is not periodic in time.



Chapter 4

The Potential Equation

4.1 Potential (Laplace) Equation

Definitions: 1. Au = V?u = 0 is called the potential or Laplace’s equation.

Au can be read as delta u or Laplacian of u. V2u is read as nabla-squared u or del-squared u. Nabla is the
name for an ancient harp in middle east and is used more recently for V, due to its shape. Traditionally,
the symbol V was called del.

. . 9 d’*u
In one dimension, Au=V-°u= -
dx
0?u  0%u
In two dimensions, Au = V?u = 5 T 33
8nx oy
0%u
In n dimensions, Au =V = 5
o 07

2. Solutions of the potential equation are called harmonic functions.

We can think of Laplace’s equation as the time-independent (equilibrium) part of the heat or wave equa-
tion. Many physical phenomena are described by this equation.

Suppose V2u = 0 in some region 2 (a line segment, a rectangle, etc.). We usually have one of the following
three types of boundary conditions.

1. The value of u on the boundary of Q, 94, is specified; u|gpq = f(z).

2. The value of directional derivative of u along the outward pointing unit normal n on the boundary
is given; g—:ﬂag = f(x). Recall that g—z = Vu-n.

3. (au—i—ﬁg—z) loq = f(x).
The boundary value problem consisting of the potential equation and

I. the B.C. 1 is called the Dirichlet’s problem.
II. the B.C. 2 is called the Neumann’s problem.

III. the B.C. 3 is called the Robin’s problem.

Theorem 1. (Maximum Principle) Suppose VZu = 0 on some open (does not contain its boundary),
connected (one piece), bounded (contained in a box of finite dimensions) set 2, or equivalently, Vu = 0
on some bounded domain 2. Then, if u is not constant, it must contain its maximum or minimum value
on the boundary of 2.
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Example. Suppose u(z, y) is a function defined on the open rectangle R and its boundary with u|gpr = 1,
while at some point in R, the funcion value of w is 2. Then, by the Maximum Principle, we can not have
V2u = 0in R. That is, v is not a harmonic function. PUT THE GRAPH HERE.

Theorem 2. Suppose {2 is as in the Maximum Principle theorem and

VZu=0, inQ
u =0, on 0N °

Then u = 0 in Q.
Exercise. Prove the last theorem using the Maximum Principle.

Theorem 3. Suppose (2 is as in the Maximum Principle theorem. Then the solution of the Dirichlet’s
problem

Viu=f inQ
u =g, on 0f)
is unique.

Exercise. Using Theorem 2, prove the Theorem 3.

Remark. Solution of the Neumann’s problem is not unique, since if u is a solution, then uw + ¢ is also a
solution, where ¢ is any constant. Show it!

Now, consider the potential equation in two dimensions. We can write V2w in polar coordinates, as follows.

x =1 cosf PUT GRAPH HERE
y=r sinf
r=/12+y?
9_{tan_1g, x>0
o 7r+tan*1%, <0
—Z<O< L and0#Z,7r>0

If z=0and y # 0, then r = [y| and 6 = (sign of y)5. If z =y = 0, then 7 = 0 and 6 is arbitrary.

Using the chain rule we will find the partial derivatives of r and 6 with respect to each of the variables x
and y and use them to find the first and second partial derivatives of u with respect to the variables x and y.

HM‘@

cos 0
=

=...= _sné Similarly,g—z =

T

- 1
g—; = %(%2 +9?)722x =--- = cosf. Similarly, g—; =siné. % =

|
|

1+

aw‘m

Classroom discussion!
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ou sin @ du

ou Ou Ox + 871;89

ox or Ox T T 0

Pu _ 0 (Ou\ _ O (Ou\Or 0 (Ou\90 __ _ 2 n03u sinf cos @ 9%u sin? 6 9%u sin” 6 du sin 0 cos 0 Ju

ot = 02(0n) = or(Gu) s T 95 (0g) g = -+ = cos™ O — 2SMTEEEgrg 4 B2 g + 2 or +2E0 5
.. 2 . 2 : -0 52 29 92 2 e . . .

Similarly, 2772‘ = sin? 92712’ + 28 HTC%G gﬂ;‘e + 5 g % + 2 8 g—;{ — 284 32059 %. Classroom discussion!

After substituting in V?u = % + giyé‘ and simplifying, we will get

?u  10u 1 9%u

2 —_— [ — ——
vu_8r2+r8r+r2892'

Classroom discussion!

4.2 Potential in a Rectangle

We want to solve the Dirichelt’s problem in a rectangle. PUT THE GRAPH HERE.

Vu =0, O<z<a 0<y<b
U(IE, O)Zfl(.%'), U,(.’L‘, b):f2($)7 0<z<a
u(0, y) = u(a, y) =0, 0<y<b
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Since the PDE and two of the boundary conditions (on parallel sides) are linear and homogeneous, we can
apply the method of separation of variables.

Assume u(z, y) = X(z)Y (y). Plug into PDE and boundary conditions. Using —\ as the constant of
separation we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of A\. Classroom discussion!

X"(z)=-2X(z), 0<z<a Y'(y) =AY (y) =0, 0<y<b
X(0)=X(a)=0

It is easy to see that no nonzero constant function can be a solution for X. (Show it!) Therefore,
by the S-L theorem, A > 0. Let A\ = u? with u > 0. The solution of the above EVP is u = LS
X(x) = sinpa = sin 7% for n = 1,2, ---. And the corresponding solutions of the ODE are Y (y) =

nry _nmy . .
AetY - Be M = Ae + Be~ "a . Classroom discussion!

At this stage it would be helpful to use the identity

Ae*+ Be * = (A—i—B)%—l—(A—B)% = (A+ B)coshz+ (A — B)sinhz
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and using A and B, again, in place of A+ B and A — B, we can write Y (y) = A cosh “7¥ + B sinh *7¥.

Remark. Another way of obtaining the solution of Y is to notice that y; = cosh py and yo = sinh py are
two solutions of the ODE (Show it!) and they are also independent (W (y1,vy2) = y1ys — yoy) = -+ # 0),
hence Y (y) = A, cosh uy + B sinh puy.

Forn = 1,2,---, let p, = 2%, X, (z) = smm Y, (t) = Apcosh ™Y + B, sinh ™2 and u,(z, y) =
Xn(2)Yo(y ) (Ancosh%—i—aninh%)sm -

By the superposition principle

dnun (z, t) a, cosh ¥ 4 ¢, sinh 2™¥) sin 27
a a a

n=1

where we have written d, A, and d,B, as a, and c¢,, respectively.

Now, use the remaining two boundary conditions to find the constants a,, and c,.
Zansmm: 1(z),0<zr<a

2
By the uniqueness of the F. series, assuming f; is sectionally continuous, a, = p / J1(x) sin "2 d.

o0
u(zx, b) = Z(an cosh”T’Tb + ¢y sinh ”T”b)sin% = fa(z),0<z <a
n=1

cosh 22 ’”rb
1 AT mb apn where

By the uniqueness of the F. series, assuming fs is sectionally continuous, ¢, =
2 a
= / fa(z) sin "2 d.
a Jo

Thus,

sinh 2o U T

e h n7rb
b . cos .
u(z, y) = E |:sinhn""b sinh 7 + ay, <cosh i — mb sinh “7¥ )] sin "7,
a

n=1
h 27e inh 27 (b—
Using a hyperbolic function identity, cosh “7¥ Cosh a2y sinh 7Y = W
See |[Review, Identities, Formulas and TheoremsL
Finally,
o0
u(z, y) = [ — Mb sinh 2% (b — y) + E"’*b sinh my] sin 22 where
1

2 (4
0 =2 [ @sin®2 do and b, =2 [ pa(o)sin 2 da,
0 @Jo

a

Of course, if the problem asks for it, we will do the step of mathematical justification.

Remark. For solving Y” = ;2Y’, we could have noticed that y; = sinh puy and yo = sinh u(b — y) are two
independent solutions of it (Show it!) and, immediately, written Y (y) = asinh py + ¢sinh p(b —y). This is
the most convenient form of the solution Y since when we plug in y = 0 and y = b, one term of it is zero,
making the calculation of the constants easier.
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Now consider the following more general problem. PUT THE GRAPH HERE.

V2u =0, 0<z<a, 0<y<b
'LL(IE, O)Zfl(flf), U(IL’, b):f2($)7 0<z<a
u(0, y) = g1(y), u(a, y) = g2(y), 0<y<b

Since we do not have homogeneous boundary conditions on two parallel sides, we break this problem into
two such problems.

V2u; =0, 0<zr<a, 0<y<d V2uy =0, 0<zr<a, l<y<d
ui(z, 0) = fi(z), 0<z<a ug(x, 0) =0, O<z<a
ui(z, b) = fa(z), 0<z<a ug(z, b) =0, 0<z<a
ur (0, y) =0, 0<y<b uz(0, y) = g1(y), 0<y<b
ui(a, y) =0, O<y<bd ug(a, y) =g2(y), 0<y<b

Since the PDE and all boundary conditions are linear, it is easy to see that if u; and wuy are solutions of
these problems, then u = wu; + ug is a solution of the original problem. (Show it!). We have already solved
for uq; and the solution for us will be similar.

o0

= E —An__ginh (g — _Bn__gingy 2T | iy 7Y
ug(z, y) = [Sinh%asmh o(a— )+ Sinh%smh X ]SID 32, where

n=1

9 b 2 [P
A= [ owsin®ay and B, = [ gola)sin 2 .
0 0

Remark. Think about types of problems (PDE, boundary or initial conditions, and domain) we can apply
the method of the separation of variables.

4.3 Further Examples for a Rectangle

We want to solve the following potential equation in a rectangle with mixed boundary conditions.

Vu =0, O<zrz<a,0<y<b
u(z, 0) = fi(x), u(z, b) = fa(z), 0<z<a

ou ou

%(O7y)_%(aay)_o7 0<y<b

Since the PDE and two of the boundary conditions (on parallel sides) are linear and homogeneous, we can
apply the method of separation of variables.

Assume u(z, y) = X(z)Y (y). Plug into PDE and boundary conditions. Using —\ as the constant of
separation we will get the following S-L EVP and ODE. Notice that the second order linear ODE with the
constant coefficient can not be solved until we know the value of A\. Classroom discussion!
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X"x)=-XX(z), 0<z<a Y'y)—AY(y) =0, 0<y<b

X'(0) = X'(a) =0
By the S-L theorem, A > 0. If A\ = 0, then the solution of X"(z) = 0, X'(0) = X'(a) = 0, is
X(z) = 1 and the solution of Y"(y) = 0 is y(y) = A+ By. Set Xo(z) = 1 and Yy(y) = Ao + Boy,

then ug(z, y) = Xo(y)Yo(y) = Ao + Boy. Classroom discussion!

For all other cases, A > 0. Let A = 2 with g > 0. The solution of the above EVP is y = M X (x) = cos
where n =1, 2, ---. And the corresponding solutions of the ODE are Y (y) = Asinh uy + Bsinh u(b — y).
Classroom discussion!

nm

Forn = 1,2,---, let u, = %, Xy(x) = cosp,r and Y,(y) = Apsinhp,y + By sinh p, (b — y), then
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un(z, y) = Xn(y)Yn(y) = (Apsinh 22¥ + B, sinh %% (b — y)) cos "2

Remarks: 1. Since we will form a linear combination of all solutions u(x, y) = X (z)Y (y), that is, multiply
each by a constant and add them, we used one “1” for the constant in the solution of X (x).

2. We chose to write Y,,(y) = A, sinh u,y + By sinh i, (b — y) in order to make future calculations for
constants a bit easier; at y = 0 and y = b, one of the terms is zero.

By the superposition principle,

oo oo
u(zx, y) = couo(z, y) + chun(:n, y)=co+doy+ Z(C” sinh 7 4 d,, sinh 7 (b — y)) cos "TE

n=1 n=1

where we have used ¢, and d, in place of ¢, A, and ¢, B,, respectively, forn =0, 1, - --.

Now, use the remaining two boundary conditions to find the constants ¢, and d,.

u(z, 0)—co+2d sinh 2% co =fi(z),0<z<a

n=1

By the uniqueness of the F. series, assuming f; is sectionally continuous,

1 a
— / fi(z)dz and d,, = P mb / fi(x) cos XL dz.

u(z, b)—co+bd0+ch81nh"—’d’cos = fao(z),0<x<a

n=1

By the uniqueness of the F. series, assuming f; is sectionally continuous,

1 N a
do = (f2( ) — ¢o) dz and ¢, = -b/ (f2(x) — co) cos "2E d.
ab asinh *7= Jo

Classroom discussion!

Now, solve the following potential equation in a rectangle with another type of mixed boundary conditions.



CHAPTER 4. THE POTENTIAL EQUATION 81

Vu =0, O<zr<a, 0<y<d
gZ(x, 0)=f(z), 0<z<a

u(z, b) =0, 0<z<a

ou

—(0 =0 0 b

5.0 9) =0, <y<

u(a,y) =gy), 0<y<b

Since we do not have homogeneous boundary conditions on two parallel sides, we break this problem into
two such problems.

V2u; =0, O<zr<a,0<y<d V2uy =0, O<zr<a,0<y<b
0 0

alyl(x,()):o, O<z<a ai;(x,()):f(x), O<z<a

ui(x, b) =0, 0<z<a ug2(x, b) =0, 0<z<a

8’&1 GUQ

—(0,y)=0, O0<y<bd —(0,y) =0, O<y<bd

5 (0 ) y 5, (0 Y) y
ui(a, y) =9g(y), 0<y<b ug(a, y) =0, O<y<bd

Since the PDE and all boundary conditions are linear, it is easy to see that if u; and wuy are solutions of
these problems, then u = u; + ug is a solution of the original problem. (Show it!).

First, solve for u;. Assume ui(z, y) = X(2)Y(y). Plug into PDE and boundary conditions to get the
following S-L EVP and ODE with one boundary condition. Classroom discussion!

Y'(y)=-AY(y), 0<y<b X"x)=AX(z)=0, 0<z<a
Y'(0)=Y(b) =0 X'(0)=0

It is easy to see that no nonzero constant function can be a solution for Y. (Show it!) Therefore, by the

S-L theorem, A > 0. Let A = p? with g > 0. The solution of the above EVP is p = (2"2_1)7r, Y (y) = ccos puy

where n = 1, 2, ---. And the corresponding solutions of the ODE with one B. C. are X (z) = dcosh px.

Classroom discussion!
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Forn=1,2,---,let p, = W, Xy (x) = cosh ppx and Y, (y) = cos pupy, then u,(z, y) = X, (y)Ya(y) =
h (2n—1)mz (2n l)Try
cos 55— COS ~——op

Remarks: 1. Since we will form a linear combination of all solutions u(x, y) = X (z)Y (y), that is, multiply
each by a constant and add them, we used one “1” for the constants in the solutions.
2. We chose to write X () = c¢sinh pux + d cosh px in order to make future calculations a bit easier.

By the superposition principle,

oo
y) = Zanun(l'a y Zan COSh (2n— 1)7rx (QRE;)W?J

Now, use the remaining boundary condition to find the constants a,,.

Zan cosh 2= 1)”“ (2";;)” =g(y),0<y<b

By the uniqueness of the F. series, assuming g is sectionally continuous,

2 /b (2n—1)my
ap, = ————— [ g(y) cos =52 dy.
n b cosh (2n 2;)7ra 0 2b

We will solve for ug in a similar fashion. Assume us(z, y) = X (z)Y (y). Plug into PDE and boundary
conditions to get the following S-L EVP and ODE with one boundary condition. Classroom discussion!
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X"x)=-XX(z), 0<zx<a Y'(y) =AY (y)=0, 0<y<b

X'(0)=X(a) =0 Y'(0) =

83

It is easy to see that no nonzero constant function can be a solution for X, therefore, by the S-L theorem,
A > 0. Let A = v? with v > 0. Then v = (2”2_(11)”, X(z) = ccosvz and Y (y) = dsinhv(b — y) for

n=1,2, --. Classroom discussion!
For n = 1, 2, let%-%
Xa9)¥aly) = cos C58E iy @by

By the superposition principle,

9) =S butn(, y) = 3 by cos EUTE gipp Ly

Now, use the remaining boundary condition to find the constants b,,.

, Xn(z) = cosvpx and Y,(y) = sinhp,(b — y), then u,(z, y)
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o
iif( )= D = b cos B cosh B (b — )
881;2(36, 0) =Y — BolT cosh rmy, cos CUTE — f(2) 0<w <a

n=1

By the uniqueness of the F. series, assuming f is sectionally continuous,
a

4 2n—1)mx
by, = — f(zx) cos 2o g
" 2n—1)mwb 2a
(2n — 1)m cosh %
Finally,
Zan cosh & 1)” (2n— 1)” + Zb cos 1 ; sinh (Zn 1) ~(b — y) where
b a
an—il/g(y)cos(%gb)”ydyandbn:— 1 5 b/f(:z)cos@ng;)mdx.
bcosh % 0 (2n — 1)m cosh % 0

4.5 Potential in a Disk
We want to solve the Dirichelt’s problem in a disk. PUT THE GRAPH HERE.

0%u  10u 1 9%u

2, _ _
V=gt g Tragg =0 V<r<em<b<n
u(c, 0) = f(0), —T<f<m
u(r, —m) = u(r, m), 0<r<ec
ou ou
%(T‘, _ﬂ):%(n 7'(')7 O<r<ec
u(0, 6) bounded, —T<f<m

We have used polar coordinates since the domain is a circle. In polar coordinates points (r, ) and (r, 0+2)
are the same point, so we just need to use a 2m length for 6 values. This also implies that the solution
should be 27 periodic, since we must have u(r, §) = u(r, § + 2w). We have chosen to use the interval
(—m, m) for 6 since it matches with the way we defined F. series. Now, since (r, —m) = (r, ), we should
have the same solution values at those points. The conditions u(r, —m) = u(r, 7) and %(r, —7) = %(r, )
ensures that 27-periodic functions v and % are continuous at # = +w. Of course, we are looking for a
solution defined on the entire disk. Specifically, we will use that fact at the origin. This condition has been

listed as u(0, #) bounded. We could have also stated that (0, 8) should be in the domain of u, or lin%u(r, 0)
r—

must be a finite number.

Remark. Another option, in place of restricting €, could have been to allow both u and f be 27-periodic
functions and —oo < 6 < oo. In that case, we still need the continuity and boundedness conditions.

Apply the method of separation of variables. Assume u(r, 8) = h(r)¢(0). Plug into PDE and continuity
and boundedness conditions to get the following irregular S-L EVP and ODE with an added boundedness
condition. Note: I used ¢(f) rather than ©(6) for ease of hand writing. Classroom discussion!
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¢"(0) = - o(0), —m<O<m r2h"(r) +rh(r) —Ah(r) =0, 0<r<c
P(—m) = o(m) R(0) bounded
¢'(—m) = ¢(m)

By the (Irregular) S-L theorem, A > 0. If A = 0, then ¢(f) = ¢10 + c2 and ¢(—m) = ¢(m) implies that
c¢1 = 0. Thus ¢(f) = c2 and the constant function also satisfies the 2nd boundary condition.

Now, assume A > 0. Since we have not solved this EVP before, we will solve it here.

Characteristic Equation: 72 = =\ = r = +v/\i = () = ¢ cos VAO + cosin VA6
Continuity Condition for g: ¢(—m) = ¢(m) = .- = 2csinVAT=0
Continuity Condition for ¢': ¢'(—m) = ¢'(n) = o= 2cVAsinV/ AT =0

Classroom discussion!

Since vA > 0 and not both ¢; and ¢y can be zero (why?), we must have sin VA7 = 0. Thus A = n? for
n=1,2,--- and ¢(#) = c1 cosnb + casinnb. Classroom discussion!
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Remark. Notice that we can combine these two cases and write solutions as A = n? and ¢(0) = c1 cos nf +
casinnf forn =0, 1, ---. (For n=0, A =0 and ¢(0) = ¢;.)

For A = 0, the solution of r2h”(r) 4+ rh(r) + Ah(r) = r& (rdt) = 0 with R(0) bounded is h(r) = d;.

Classroom discussion!

For A=n? n=1,2, ---, the equation 72h” () +rh(r) — n%h(r) = 0 is the well-known Cauchy-Euler equa-
tion, whose solutions are of the form h(r) = r®. Pluggingh(r) = r®, b (r) = ar® ! and A" (r) = a(a—1)r*2
into the ODE we will get « = +n. The two linearly independent solutions are hy = r~" and he = r™ and
the general solution is h(r) = dir™" + dar™. The condition R(0) bounded implies that h(r) = dar™. See
[Review, Identities, Formulas and Theorems| Classroom discussion!

Remark. We can also combine these two cases and write solutions as ¢(0) ™ for n =0, 1, ---.

By the superposition principle,

o
u(r, 0) = ag + Z (an, cosnl + by, sinn) r"

n=1

Now, use the remaining boundary condition to find the constants.

oo
u(e, 0) = ag + Z (c"apcosnb + " b,sinnb) = f(0), —-T <O <
n=1
By the uniqueness of the F. series and the convergence theorem, assuming f is continuous and sectionally
smooth,

a =3[ [f(0)df,a, == f(0)cosn df and b, = 5 [ f(0)sinnd db.

e e

Notice the following property of this solution that can be generalized. At r = 0, u(0,0) = ay =
™ ™

= f(0)do= - / u(c, #) df. That is, the solution at the origin is the average value of the boundary
—

—Tr
condition on the circle of radius ¢, centered at the origin.
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Theorem. (Mean Value Property) Suppose V2u = 0 on some connected, open region { with smooth
boundary. Then for any disk of radius ¢ centered at the origin, which lies entirely in §2, the value of u at
the origin is the average value of u on the boundary of the disk, circle of radius ¢ centered at the origin.

w(0, 0) = 21/_7r u(e, 0)do

Remark. This theorem is also true if the center of the disk is at any point P. The value of v at the point
P is the average value of v on the boundary of the disk of radius ¢, centered at P. PUT THE GRAPH
HERE.

Exercises: 1. Solve the above problem for f(6) = 1.
2. Solve the Laplace equation on the half-plane.

0%u  10u 1 9%u

2 = =5 _ —_—— =
vu_8r2+r3r+r2802 0, 0<r<ec0<fO<m
U(C’G):f(e)’ 0<f<m
u(r, 0) = u(r,m) =0, O<r<e
u(0, 6) bounded, 0<f <

3. Solve the Laplace equation on the quarter-plane.

?u 1 @ 1 9%u

2, 0w 1 10%u .
vu_8r2+rar+r2802 0, 0<r<ec,0<0<3
u(c, 0) = f(6), 0<0<3
U(T’O):u(rag)zoa O<r<e
u(0, #) bounded, 0<0<3

4.6 Classification of Partial Differential Equations (Classification and Limita-

tions in the Course Textbook)

So far we have studies heat, wave and potential equations. Here is a summary of their qualitative features.

Equation Features
Heat Exponential behavior in time. Existence of a limiting (steady-state) solution.
Smooth graph for ¢ > 0.
Wave Oscillatory (not always periodic) behavior in time. Retention of discontinu-
ity for ¢ > 0.
Potential Smooth surface, Maximum Principle, Mean Value Property

The most general 2nd-order linear PDE is two variables is

2 2 2
Ou O"u Ou , p0u  p  puia=o

A—+B—+C—
oez " Pacon "o TP e TV 5y
where the coefficient A, B, --- are, in general, functions of £ and 1. We classify these PDE’s as follows:
Elliptic at (£, n) if B2 —4AC <0 at (&, 1)

Parabolic at (¢, 7)  if B2 —4AC =0 at (£, 1)
Hyperbolic at (¢, n) if B2 —4AC > 0 at (£, n)
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The potential equation is elliptic, the heat equation is parabolic and the wave equation is hyperbolic.
(Check it!)

Example. Classify the Tricomi equation y gz, + uyy = 0.
Classroom discussion!

Canonical Forms of Second Order Linear PDE’s -

Equation Canonical Form
Elliptic Uge + Upy + terms with lower-order derivatives = 0
Parabolic uge + terms with lower-order derivatives = 0

ugy + terms with lower-order derivatives = 0

Hyperbolic or

Uge — Uyy + terms with lower-order derivatives = 0

Any of these three types of equations can be put in their canonical form, by simply making an appropriate
change of coordinate system.

In this section our book also has a discussion on where we might be able to use the method of separation
of variables. Read it!



Chapter 5

Problems 1in Several Dimensions

5.1 Two-Dimensional Heat and Wave Equations (Sections 5.1 and 5.2 in the

course textbook)

Here I will merely state these equations and leave the derivation for you to read from the course textbook.
The two dimensional heat equation is

Ou i Ou Ou is the heat tion rat
K —_— —_— = C— — 1S € nea eneration rate

I.C. wu(zx,y,0)=f(x,y)

and the boundary conditions can be any of the three types we have seen before, or mixed ones.

K

If no heat is generated, g = 0, and letting k = e We get

0%u n 0%u 1 0u
ox2  oyr kOt
This equation, for example, describes the temperature, u(zx, y, t), in a thin plate of heat-conducing material

with insulated surfaces, at any given time ¢.

The two-dimensional wave equation is

?u 0% 1 9%u

02 T2 T 2o

B.C. wu(z,y,t)=0 for (z, y) on the bounday
u(z, y, 0) = f(z, y)

I.C. ou 0
a(xa Y, ) - g($a y)

This equation, for example, describes the disposition, u(zx, y, t), of each point of a membrane which is
tretched taut over a flat frame in the xy-plane, at any given time. If the membrane line flat at time zero,
then f(z, y) = 0, and if the velocity of each point of the membrane at time ¢ = 0 is zero, then g(x, y) = 0.

5.3 Solution of the Two-Dimensional Heat Equation

We want to solve the initial value - boundary value problem stemming from the diffusion of the heat
equation in a rectangular plate of uniform, isotropic material.
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Pu  0%u 1 0u

—t === 0 0 b,t>0
8x2+8y2 TS <zr<a, 0<y<b t>
u(z, 0, t) = fi(z), u(z, b, 0) = fa(x), 0<z<a,t>0

U(O,y, )_gl() (CL Y, )—92(y)7 0<y<b7t>0

u(z, y, 0) = f(z, y), 0<z<a,0<y<bd

The steady-state temperature, v(z, y), is the solution of
o, ot
ox?2  Oy?
v(z, 0) = fi(x), v(z, b) = fo(x), 0<zx<a
v(0, y) = g1(y), v(a, y) = g2(y), 0<y<b

which we already know how to solve: Chapter 4, Section 2.

=0, 0<zr<a, l0<y<d

Therefore. what remains is to find the transient temperature w(z, y, t) = u(x, y, t)—v(x, y) which satisfies
Pw  Pw 10w
o2 "oy Tka
w(z, 0, t) = w(x, b, 0) =0, 0<z<a,t>0
w(0, y, t) = w(a, y, 0) =0, O0<y<b t>0
u(z, y, 0) = f(z,y) —v(z,y), 0<zr<a,0<y<b

0<zr<a,0<y<bt>0

Let w(zx, y, t) = ¢(z, y)h(t) and then apply the method of separation of variables. To solve the result-
ing two-dimensional eigenvalue problem in the function ¢, let ¢(z, y) = X (2)Y (y) and, again, apply the
method of separation of variables to get two one-dimensional eigenvalue problems. Combine the solutions
in a double sum using superposition principle and find the constants using the initial condition which
results in a double Fourier series. Classroom discussion!
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Remarks: 1. If f is smooth enough (all partial derivatives of large enough order exist) then the step of
mathematical justification can be performed, and so w(z, y, t) above will actually be a solution.

2. After learning to solve two-dimensional eigenvalue problems, we will use the Review, Identities, Formu-
las and Theoremshandout.

3. After learning about double Fourier series, we will use the Review, Identities, Formulas and Theo-
remshandout.

Exercises: Show the following.

%b, ifn=p#0and m=q¢g=0
1.//smmcosmgrysmmcosq”ydydx— @ ifn=p#0and m=q#0

0, otherwise

ab, fn=m=p=q=0

ab ifn=p#0andm=q¢g=0

2
.//cosmcosm;rycosp cos Gldyde =4 2 ifn=p=0andm=q#0

N

P
“zb, ifn=p#0and m=q#0

0, otherwise

0? 0?
O 0 Ao w)
ox 8 :(M)2+(M)2
3. ¢ #(0,y) =(a, y) =0 — “’ b formn=1,2,-- andm=0,1,--
06 00 P(x) = sin "T= cos T
—(z,0) = ==(z,b) =0
dy dy
r 62 62
a¢2§+a(§ —Ag(z, y)
x Y nm\2 mm\2
9 0 A=)+ (%)
4. ——0,y) = ~—(a,y) =0 = forn=0,1,---andm=0,1,---
g¢ (gé ¢(x) = cos "TE cos T
o (2,0) = ==(x, 0) =0
oy 8y
5. If f(z, y) ZZCnmsm—c mb for (x, y) € (0, a) x (0, b), then
n=1m=0
a rb a b
O?”I,O:azb/ /f(x,y)sin”;mdydxananm:jb/ /f(a:,y)smmcosmﬁydydx
o Jo
6. If f(z, y) Z Z Ay cos 2L Y for (x, y) € (0, a) x (0, b), then

n=0m=0

a rb a b
00:(11{,/ /f(.T,y)dydl’,AnOZfb/ /f(wvy)cosn;mdydxv
0 Jo 0 Jo

a b a b
AOm:aZb/o /Of(x,y)cos”?dydxandAnmzé/o /Of(x,y ) cos BIE cos Y dy dx

5.4 Problems in Polar Coordinates

In this section we will motivate study of Bessel’s equation by considering the problems of the vibration
of a circular membrane (two-dimensional wave equation) and the conduction of heat in a circular plate
(two-dimensional heat equation) in polar coordinates.
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Wave Heat
1 0%u 1 0%u

2 2

= —_ — = — —F - <
U 292 V-u D2 ,0<r<a, n<f0<mt>0
u(a, 6, t) = f(6) u(a, 0, t) = f(0) ,—m<f<mt>0
u(r, 6, 0) = g(r, ) u(r, 8, 0) = g(r, ) ,0<r<a,-nm<6<m
(?;:(7“90) h(r, 6) ,0<r<a,—nm<6<m
u(r, —m, t) = u(r, m, t) u(r, —m, t) = u(r, m, t) ,0<r<a,t>0
8—u(r—7rt) 8(7"7Tt) a—u(r—wt) 8(7"7Tt) 0<r<a,t>0
20" 06 20" 06 ’ ’
u(0, 0, t) defined u(0, 0, t) defined , <0< 7 t>0

Although it is obvious from the physical considerations that we are looking for a bounded solution, here
we have stated it explicitly for r = 0 since we will use it mathematically.

The time-independent solution v is the solution of

V2u =0, O<r<a,—-mw<6<mw
v(a, 0) = f(0), —T<f<m

v(r, —m) = v(r, 7), 0<r<a

ov ov

%( —m) = 89( m), 0<r<a

v(0, 0) defined, —T<0<m

for both cases. We can solve for v as we did in Chapter 4, Section 5. Therefore, what remains is to find
the transient temperature w(z, y, t) = u(x, y, t) — v(z, y) which satisfies

Wave Heat
1 9%w 1 0

2 2

== = — - <
Vaw 2 92 Vaw D2 ,0<r<a,—7m<0<mt>0
w(a, 0,t) =0 w(a, 0,t) =0 , —m <0< 7 t>0
w(r, 0,0) = g(r, 0) —v(r, 0) w(r,0,0)=g(r,0)—v(r,0) ,0<r<a, —-n<0<m7
361:(7“90) h(r, ) ,0<r<a, —nm<6<m
w(r, —m, t) = w(r, m, t) w(r, —m, t) = w(r, m, t) ,0<r<a,t>0
8—w( —m, t) = ow —(r, m, t) a—w( —m, t) = Ow —(r, m, t) 0<r<a,t>0
06 06 06 06 ’ ’
w(0, 0, t) defined w(0, 0, t) defined , —m<O<mt>0

Let w(r, 0, t) = ¢(r, O)h(t) and then apply the method of separation of variables. To solve the resulting
two-dimensional eigenvalue problem in the function ¢, let ¢(r, ) = R(r)©(0) and, again, apply the method
of separation of variables. Classroom discussion!
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r’R'(r) + rR'(r) £ v**R(r) = ’R(r), 0<r<a
R(0) defined
R(a) = 0

5.5 Bessel’s Equation

d? d
z + Q(x)dfy + R(z)y = 0 with P, @ and R are polynomials with
x

Definitions: Consider the ODE P(m)d—
x

no common factor.
1. A point (number) zy is called singular if P(xg) = 0.

are both finite.

R
2. The singular point zg is called regular if lim (z — xo) Q) and lim (z — p)? (=)
T—z0 (x) T—T0 P(x)

Remark. This is not the most general definition of a singular point.

R
gg; and (z — xO)QPEg are analytic at zg; they have

convergent power series expansion at xg. To solve an ODE near the regular singular point xg, we look for

If 2 is a regular singular point, then (z — ()

o0
a seris solution of the form y(z) = (x — )" Z an(z — x)? with r and a,,’s to be determined.

n=0

Definition. An ODE of the form x2y"(z) +zy/(z) £ v? 2% y(x) = p? y(z), with © > 0 and v > 0, is called
a Bessel’s equation.
If we divide both sides of this equation by z, we can write it in the form (xy')’ + (£v2x — “—2)3/ =0.

x

Definitions: 1. An ODE of the form (z¢') + (v x — %Z)y =0, with 4 > 0 and v > 0, is called a Bessel’s
equation of order p and parameter v.

2. An ODE of the form (zy') — (v 2z + %Z)y =0, with 4 > 0 and v > 0, is called a Bessel’s equation with
purely imaginary argument of order p and parameter v.

It is easy to check that x = 0 is a regular singular point for the Bessel’s equation. Now, we look for the
[e.9]

o0
series solution of the form y = 2" Z an " with ag # 0. By plugging in y, v/ = Z(r + n)ap 2”71 and

n=0 n=0
o
y' = Z(r +n)(r+n—1)a, z" 72 into the Bessel’s equation, we can find its series solutions. Classroom
n=0

discusston!
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A second linearly independent solution yo can be found in several ways, including the following. Classroom
discussion!

d
A second linearly independent solution is y2(x) = y1(z) / Tx , where C' = 0 is used for the constant

zyi(z)
of integration.

o
o (=)™ pz\2mts . :
Definitions: 1. J,(z) = E —_— (—) is called the Bessel function of the first kind of order
L=oml (m+ p)! \2
. ;
2. Yu(x)) = Ju(z) / JT:B()’ where C' = 0 is used for the constant of integration, is called the Bessel
x Ji(x

function of the second kind of order u.

Two linearly independent solutions of (z ') + (v? x — i )y =0 are J,(vx) and Y, (v ).

T

Properties of J,(z) and Y, (z)

1. For x very small, but positive, J,(z) ~ %(%)“ Also, Jo(0) = 1 and J,(0) = 0 for p > 0.
Inz, pu=20
zH >0
3. Ju(z) > 0and Y,(z) = 0 as x — oo.
4. J,(x) and Y,(x) have an infinite number of positive zeros. Also, Jo(x) and Ji(x) have no roots in
common.

5. L@ () = —z M1 (z) = [T 41 (2) de = —27#J,(z) + C and

L (rH T (2) = 2T, () = [t LT, (2) do = 2+ g (2) + C.

6. Ji(z) = —Ji(z) = [ Ji(z)dz = —Jo(z) + C and L (2J1(2)) = zJo(z) = [2Jo(z)dx = aJi(z) + C.
7. Suppose 0 < oy < ag < --- are positive zeros of J,(x). Then

N

Y, (z) ~ Constant x , 80 |V, ()] = o0 as x — 0.
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/Oaju(anx)J#(amx)l‘dIU:{ (()1, n#*m '

a a ;H-l( m) m=m
8. Suppose 0 < 1 < B2 < --- are p081tlve zeros of Ji(x) (or J)(z)). Then
/a Jo(ﬁnx) (ﬁmm)ajdm =0 for n # m.
9. Supp(;)se 0 <aﬂl < P2 < --- are positive zeros of Jo(z). Then
Oa Jl(ﬁg—x)(]l(ﬁ%f)xdm =0 for n # m.
10. PUT GRAPHS HERE!

11. Convergence Theorems - Suppose f(z) is sectionally smooth on the interval (0, a) and x is any
point on that interval. Then the following generalized Fourier series hold.

For 0 < a1 < ag < -+ - positive zeros of Jp(z),
(o]

n 1 - n
S ando(228) = 2(#(a7) + (&) where a,, = 2/ £) (P2 e o
n=1 a 2 Jl Oén
For 0 < oy < ap < -+ positive zeros of J,(x),

1 2

> andu(%25) = )+ £ where an = = s | g

)z dx.

For 0 < 31 < B2 < --- positive zeros of Ji(x) (or J}(z)),

= a1 g e | @
D anh(“5) = U ) whereao = 5 | @) edsanda, = o

For 0 < 1 < 82 < --- positive zeros of J) (z) with > 0,
~ s f) (5”‘“) s
ZanJu(7> = §(f(x_) + f(2™)) where a,, = 5
n=1 “ / T2 o de

Now, consider the case “—v?” and p still a nonnegative integer. Two linearly independent solutions of

(zy) — (V?a+ & )y =0 are I,(vz) and K, (v ), which are defined below.

‘s - 1 x\2mtp . . .
Definitions: 1. I,(x) = E ﬁ (§> is called the modified Bessel function of the first kind
m!(m + p)!

of order p.

d
2. Ku(z)) = I,(x) / %() , where C' = 0 is used for the constant of integration, is called the modified
x I2(x

Bessel function of the second kind of order pu.
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A Few Facts About [,(z) and K, (z)

As x — 0, |K,(z)| = oo, Ip(0) = 1 and 1,(0) = 0 for p > 0.
I,,(z) and I)(z) have no real-valued zeros.

As x — oo, K, (x) — 0 and I,(x) — oo for u > 0.

PUT GRAPHS HERE!

Lol

Remarks: 1. All of the above hold even if 1 is not a nonnegative integer. In that case, (m + p)! must be

o0
replaced by I'(m + p + 1) where I'(p) = / tP~le~t dt.
0

92\ 2 2\ 2
1(z) = <> sinz and I1(z) = <> sech z
2 T 2 ™

a
Exercises: 1. Show that for m # m, / J(*20) T ("2 ) rdr = 0 where 0 < o < az < --- are zeros of
0
J.(z) and z > 0.
2. Show that for m # m, /
0

a
J.(Bmr) g, (Omr

Jrdr =0 where 0 < 31 < B2 < --- are zeros of J.(x) and

z > 0.
d? d
v st f d¢ +(A? —n*)p =0
3. Show that the eigenvalues of the eigenvalue problem (0) bounded are negative,

¢(a) =0

wheren =0, 1, ---.
o0

4. Suppose 0 < ag < ag < --- are zeros of J,(z), with z > 0, and f(r) = Zanjz(%) for 0 < r < a.
a

n=1
/ flr Qnl )y dr
Show that a,, = )
/0 J2(22D)r dr
j(r Z—f) A2 —nn+1)f=0, 0<r<a
5. Solve the eigenvalue problem £(0) defined by using the substi-

fla) =
tution h(r) = r%f(r) or f(r)= r_éh(r), where n =0, 1, ---

5.6 Temperature in a Cylinder

Suppose that the temperature u(r, 6, t) in a cylinder of radius a satisfies the following problem.
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1
Vi = kg O<r<a,—n<f<mt>0
u(a, 0, t) =0, —T<O0<mt>0
(1“90) f(r), 0<r<a, —nm<0<m

u(0, 0, t) defined, —w <0 <m, t>0

We first should mention that if f(r) = 0, then u = 0 is the solution. Assuming f(r) # 0, we can simplify
this problem by showing that u is independent of 6. Let u(r, 6, t) = R(r)O(0)h(t) and apply the boundary
condition to show u(r, 8, t) = R(r)h(t). Classroom discussion!

Remark. In general, the solution will be independent of a variable, if all initial and boundary conditions
are independent of that variable.

Thus our problem is reduced to finding u(r, t) for which

Pu  10u 1 du

gu, tgu_~9u g >0
8r2+r8r k ot’ <r<o

u(a, t) =0, t>0
u(r, 0) = f(r), 0<r<a
u(0, t) defined, t>0

Let u(r,t) = R(r)h(t), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

rRY+AXrR=0, 0<r<a
R(a) =0, and
R(0) defined,

Obviously, h(t) = C e~ ***. We can solve for R several different ways. 1. Consider the three cases: A < 0,
A=0and A > 0. 2. Use one of the exercises in the last section to just consider the case A > 0. 3. Finally,
we could just use the Review, Identities, Formulas and Theoremshandout. The choice will depend on the
wording of the problem. Classroom discussion!
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In any case, we will get A = v2 = (22)2, R, (r) = Jo(vnr) = Jo(%2T) where 0<a; <ay<--- are zeros of

n
a
2 ot

a r _
Jo(z) and T,,(t) = e ¥» nkt, By the superposition principle, u(r, t) Z anJo(— i

. Find a,’s using

the initial condition.

r, 0) = ZanJg(%) =f(r),0<7r<a.

Using an earlier result, assuming f is continuous and sectionally smooth, we get

5.7 Vibration of a Circular Membrane

We want to solve the problem of describing the displacement of a circular membrane that is fixed at its
edges. If the initial conditions are independent of # (B.C. is already independent of ), then solution will
be independent of #. This is the case we will solve.

9*u  10u 1 0%u

gu, t9u_ 9y >0
8r2+r6r c2 ot2’ <r<ot>

u(a, t) =0, t>0
u(r, 0) = f(r), 0<r<a
ou

875(7'0) g(r), 0<r<a
u(0, t) defined, t>0

Let u(r, t) = R(r)h(t), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

(rRY+XrR=0, 0<r<a
R(a) =0, and T"(t) + A\c®h(t) =0
R(0) defined,

We have learned that A = v2 = (22)2, R, (r) = Jo(vpr) = Jo(%2%) where 0 < a1 < ag < --- are zeros of
Jo(z). The general solution of T (t) — (22)% 2h(t) = 0 is T (t) = c1 cos(22%) + ¢y 51n(a"Ct)
> apct apct apr
By the superposition principle, u(r, t) = Z[an cos(——) 4 by, sin(——)]Jo(—). Assuming we can dif-
a

n=1
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O 1) = S sin( 22 4 92 cos( 2o 2T,

ferentiate term-by-term with respect to t, 5
a a a

n=1

Find the constants a,, and b, using the initial conditions. Classroom discussion!

oo

nCt :
Therefore, u(r, t) = Z[an cos(aac ) + by, sin(

n = )Jo( d dbn—— )J
a a2J2 (o) / F(r)Jo )r ran aanch an) / fr 0(

5.9 Spherical Coordinates; Legendre Polynomials

apct

)]Jo

(a"T) with

T

)rdr.

x = p sin¢ cos@

y = p sing sinf
Z=pcoso

p= i+l T 2

T <0<T,0<p< T, p>0

PUT GRAPH HERE

We want to write V2« in spherical coordinates. Using the chain rule we will find the partial derivatives
of p, ¢ and 6 with respect to each of the variables x, y and z and use them to find the first and second
partial derivatives of u with respect to each of the variables z, y and z.

% =32+ + 2’2)_% 2x = --- = sin¢ cosf. Similarly, a—p = sin ¢ sin # and ap = cos .
%(Z = pCOS¢) _— = % = _Siz(ﬁ' Similarly, % _ cosépcosqb (smce gz _ ) and 8y s1n9;os¢.

9 B . 00 __ sin 6
a—m(gp = psmqbcosﬁ) = = 55 = _p;?n¢’

since A does not depend on z.

0 _ : : 20 __ 0 39 _
a—y(y = psingsinf) = -+ = 5y = smg and 52 =0
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Classroom discussion!

= G+ B+ B - omsnofy - SRR 4 smimegy
2 . 2 ; 2.
B = B0 = DK+ AR+ FIE = = cof sin® o5y + 2t gy pinam g
sin® A cos ¢—2 cos? O sin® ¢ cos ¢ Gu +2 cos? fsingpcosp 9 + sin? #+cos? 6 cos? ¢ ou + sin20 0%u _9 sin @ cos Ocosd H2u +
p?sin ¢ 96 p Bpagb p op p2 sin? ¢ 002 p? sin ¢ 000¢
cos? 0 cos® ¢ 5%y
02 952

Classroom discussion!

Similarly, we can derive the following.

ou _ : ou cosf Ou | sinfcose du
oy Sln981n¢8p psin ¢ 00 + ) o)
ou __ @ __sin ¢ Ou
9z — COS ¢8p p 0¢
Py _ 2902 82u sin 6 cos § Ou sinf cosf 9%u —25sin? 0 sin? (]5 cos ¢p+cos? 6 cos ¢ 8u sin? fsinpcos ¢ H%u
byt = Sin 0 sin” oS4 > 271) 2 s 00 + 255 8,089 + Zsin G 6 T2 ) 9008 T
sin? 6 cos? p+cos? 6 Hu cos? 0 9%u +92 sin 0 cos Ocos¢ 9 sin? 6 cos? ¢ 52
p dp " p2sin? ¢ 892 p2sin ¢ 808(}5 P> 0¢?
@ sin ¢ cos ¢ 9 singcos ¢ H2%u sin® ¢ ou | sin® ¢ 6%u
T = cos” g3 + 2TMILRe Gy gundoond B g SWTOQu 4 MO0
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Classroom discussion!

After substituting in V?u = % + giyg + % and simplifying, we will get

Vgu— iz 2@ + 1 E singzb% + 1 @
- p2op P Op p?sin ¢ O 0o p?sin? ¢ 062

Classroom discussion!

Now, consider the ODE

d d 2
% (Slnd)d(i) =+ </~LSIH¢_ S?:l(b) g(¢) :Oa TI’LIO, 17

Let s = cos ¢. Then 3—2 = sin ¢, j—é’) = dgds _ —sinqﬁ% and %(singb%) =

dsdp
Substituting these into the ODE and simplifying, we get

d% [(1 - 52)3“;’} + [u - 1”—1232} 9(s) = 0.

Classroom discussion!

2sin ¢ cos ¢% +sin® ¢

104

d?g
ds?*
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5.9.1 Legendre’s Equation and Polynomials
2

d d

Definition. An ODE of the form T [(1 — 82)dg} + [n(n +1)— 1m 2} g(s) =0, withm =0, 1, --- and
s s -5

m<n=20,1, - --,is called a Legendre’s equation.

s = 0 is an ordinary point for the Legendre’s equation. So, we can look for the series solution of the

oo oo oo

form g = Z a s*. By plugging in ¢, ¢ = Z kags* ' and ¢" = Z k(k—1)ag s*=2 into the Legendre’s
k=0 k=1 k=2

equation, we can find its series solutions. Classroom discussion!
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Definitions: 1. P,(s) = ZZL:O(—l)l%s"_2

tively, is called the Legendre polynomial (of degree n).
2. P"(s) = TO BE COMPLETED ...

! where L = 5 or ”771, for n even or odd, respec-

Properties of (Associated) Legendre’s Polynomials

1 d»
1. P,(s) = n'2n@(82 —1)" (Rodrigues’ formula). Also, P,(—1) = (—=1)" and P,(1) = 1.
2. Py(s) = 1,.P1(5) = s, Po(s) = (35 — 1), P3(s) = 5(55® — 3s) and Py(s) = £(35s* —30s% +3). P,(s) is
a polynomial of degree n.
3. PUT GRAPHS HERE!

(2n+1)sPy(s) = (n+ 1)Py1(s) + nPu_1(s) and (2n + 1)P,(s) = P} 1(s) — P, _1(s).
O’ n # T 07 n 7&
/ Py { e "7 and /0 P, (cos ¢)Pg(cos ¢)sinpdop = ) " : .

n=mn 2nt1’

3
Il

md

6. PM(s) = (s*—1)2 o o (s) with n > m > 0. Since P,(s) is a polynomial of degree n, %Pn(s) =0

for m > n. This is the reason for the requiremer}t n>m. X
7. Pl(s) = (s° = 1), Pi(s) = 3s(s* — 1)2, PJ(s) = 3s(s* — 1), Pi(s) = 3(55* — 1)(s* — 1)7,
P2(s) = 15s(s> — 1) and P3(s) = 15(s% — 1)2.

1 0 i
8. For m > 0, / P"(s)PX'(s)ds = ’2 (ntm)! ﬁ# K and
-1 Il (nmm)? D =N =M
0, n#EN
/ PI(cos ) P2 (cos ) sinddd = ) gurmy -
2n+1 (n—m)!’ n=nzm

(2n+1)sP"(s) = (n —=m+1)P7 (s) + (n+m)P]" (s) and

10. Convergence Theorems - Suppose f(s) is sectionally smooth on the interval (—1, 1) and s is any
point on that interval. Then the following generalized Fourier series hold.

[e.e]

a s—1 s sT)) where a :2n—|—1 1 S s)ds
> auPals) = 5(F(57) + £(5) where a, = 225 [ f(s)P.(s) ds

nO

n n—m)! [1
Zanpm *1(f( )+ f(s ))Wherem:(),1,---andan:2 +1( )'/ f(s)P(s)ds.

The solution of the eigenvalue problem
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d o dg m?
s (1—5)ds]+[,u—1_82}9(5):0,—1<s<1,m:0,1,---

g(—1) defined
g(1) =1
is u=n(n+1), g(s) = P(s), where m <n =20, 1, ---. Classroom discussion!

5.10 Some Applications of Legendre Polynomials

Consider the potential equation in a sphere of radius a.

Vu =0, O<p<a,—-7<0<m0<od<m
u(a, 6, ) = F(0, ¢), —r<f0<m0<¢p<m

u(p, —m, ¢) = u(p, 7, ¢) 0<p<a,0<op<m

Qg —m0)= Lo m6)  OD<p<a0<s<

agﬂ? 7[-7 _80p77r7 p a/7 Tr

u(0, 0, ¢) defined, << m0<op<m

u(p, 0, 0) and u(p, 0, w) defined, 0<p<a, —T1<O<m

Let u(p, 6, ¢) = f(p)q(0)g(¢), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!

q"(0) = —vq
q(=m) = q(m
¢ (=m) =q'(m)

9 ) - 0 é d . d .
) T i ’ %(sm¢£)+(usm¢—m)g:0, O<op<m
9(0) and g(m) defined

v
s

and
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d . df
—(p*—
dp™ dp
f(0) defined

)—uf=0, 0<p<a

We can show that v = m?, m = 0,1, ---, q(f) = cosmf, sinmb; p = n(n+1), m <n =01, -,
g(¢) = P*(cos ¢); f(p) = p"™. Classroom discussion!

Thus, the product solutions are

cos mb

u(p, 0, ¢):p”{ }Pj{”(cosqﬁ),m:(), 1, ,m<n=0,1,---

sin m@

By the superposition principle,

u(p, 0, @) = i i Apn, p" cosmb P} (cos ¢) + i i B p" sinmf P (cos ¢).

m=0n=m m=0n=m

Find the constants using the boundary condition u(a, 6, ¢) = F (0, ¢),

i i A a™ cosm@ P (cos ¢) + i i By, a” sinm@ P (cos ¢) = F (0, ¢).

m=0n=m m=0n=m
Classroom discussion!
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= iﬁj;zl/ / (cos ¢) sin ¢ df do,
_ 2n+1(

Amn = 27T—C"L_2 (n+m)! / / ’
_ 2n+1 (n—m)!

Bimn = 27;;2 n+m)'/ /

Now, consider the wave equation on a sphere of radius a.

110

) cos mO P (cos ¢) sin ¢ df d¢ and

) sin m@ P} (cos ¢) sin ¢ df d¢o

1 92
2,, u

=292 O<p<a, —7<0<m,0<p<mt>0

u(a, 97 ¢7 t) = 07

8(/)7 05 ¢a O) = F(/% 07 ¢)7
u
8t(p76 ¢7 )_07

—r<f<m0<op<mt>0
O<p<an<f<mlO<o<m

O<p<anm<fd<mli<o<m

a( y =T, ¢a t) :u(g? T, ¢a )
87;(/)7 -, (Zsa ) o0 (pa T, ¢7 )

u(0, 0, ¢, t) defined, —m<<m0<p<mt>0
u(p, 0, 0, t) and u(p, 0, m, t) defined, 0<p<a, —71<O <7 t>0

Let u(p, 0, ¢, t) = w(p, 6, ¢)h(t), plug in to the PDE and boundary conditions to get the following
problems. Classroom discussion!

0<p<a,0<op<mt>0

O<p<a,0<p<mt>0

T"(t) = —Ach(t), t>0

and
T'(0) =0
Viw = —\w, O<p<a, —71<0<m0<odp<m
w(a, 0, ¢) =0, <0< 0<p<mt>0
w(p, qu)—w(p,w ) 0<p<a,0<go<m
ou
%(p7 (b) ae(pvﬂ— ¢) 0<p<a70<¢<ﬂ—

w(0, 0, ¢) defined, —mT<< T 0<op<m
w(p, 0, 0) and w(p, 0, w) defined, 0<p<a, —w<O<m

Let w(p, 6, ¢) = f(p)q(0)g(¢), plug in to the PDE and boundary conditions to get the following problems.
Classroom discussion!
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"
q0)=—-vq), —m<b<mw d, . dg . v
—(sing—=) + (using — ——)g =0, 0<op<m

o oG + (usino— Lo p<m

¢ (—7) = ¢ () 9(0) and g(m) defined

d  odf 2

ZPy =0, 0

dp(p dp)+( p-—u)f=0, 0<p<a

f(0) defined

fla)=0
The solution of the first two eigenvalue problems are v = m?, m = 0,1, ---, ¢(f) = cosm#, sinmb;
pw=nn+1),m<n=0,1,---, g(¢) = P (cos¢). For the third problem, we make the substitution

h(p) = p%f(p) or f(p) = p_%h(p) resulting in the following problem. Classroom discussion!

d , dh (n+1)2
—(p== Ap— — 27
dpl(pdp)+( p

p~2h(p) defined, as p — 0
h(a) =0

Jh=0, 0<p<a

The solution of this eigenvalue problem is A = (2%)?, where 0 < a1 < ag < -

are zeros of Jn+%(az)
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and h(p) = J,,1(%2). So f(p) = pféjnﬁ(%) and the solution of T"(t) = Ac2h(t), T'

h(t) = cos a’“TCt, k=1,2,---. Classroom discussion!

Thus, the product solutions are

0
u(p, 0. 6.0) =73 T (%) { s }P%os ) cos St for

sin m6

k=1,2,--- m=0,1,---andm<n=0,1, ---.

By the superposition principle,

_1 agp agct
6 mn. J = 9Pm
u(p, 0, ¢, t) g E E kP2 n+§( . ) cosmf P'"*(cos ¢) cos . +

arct

1 ozkp) sinmf P"*(cos ¢) cos
a

Remark. In the second summation, m starts with 1, not zero, since sinmé = 0 for m = 0.

Find the constants using the initial condition u(p, 6, ¢, 0) = F(p, 6, ¢),

S35 b (%

m=0n=m k=1

_1 k
Y IDSPILIVERANG
m=1n=m k=1
Classroom discussion!

) cosm@ P} (cos )+

) sinm@ P)*(cos ¢) = F(p, 0, ).

112

(0) =0 is
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3 .
Aok = 5 / / _ﬂF P, 0, )4 1 (%52) Py (cos @) sin ¢ df dep dp,

n—m m 3 .
Ak = mzjz”“ ) En+m / / /_7r (p, 0, ¢)J ot 1 (%EL) cos mO P} (cos ¢)p2 sin ¢ df dp dp and

Bk = mzjé”l / / / (p, 0, &), .1 L) sin mf P (cos ¢)p? sin ¢ d d dp

3

Remark. For a special case of heat equation on a sphere, see your textbook.
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